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Foreword 

We are witnessing a transformative era, driven by a surge of innovative 
artificial intelligence (AI) technologies, methods, and systems that are 
reshaping our world in profound and often disruptive ways. For busi-
nesses, this transformation demands agility and the capability to integrate 
AI innovations into socio-technical systems that not only maximize orga-
nizational productivity and impact but also uphold human values and 
societal ethics. 

As AI research and development continue to deliver unprecedented 
capabilities—enhancing speed, autonomy, scale, flexibility, decision-
making, and personalization—our ability to design systems that effectively 
harness these features is increasingly challenged. Addressing complex, 
“wicked” problems with AI-based systems requires more than technical 
expertise; it demands intellectual control over the design process. This 
means understanding system behaviors across all levels and contexts of 
use—not eliminating uncertainty, but developing the engineering and 
management capabilities to navigate it. 

For over five decades, the information systems and management 
science communities have employed Design Science Research (DSR) and 
Action Design Research (ADR) to create scientifically rigorous and practi-
cally relevant solutions to business challenges. These methodologies foster 
collaboration between researchers and practitioners, enabling the iterative 
development and evaluation of innovative artifacts that balance technical 
functionality with social relevance.

v



vi FOREWORD

In this context, Programmable Decisions for Business Organizations: 
An Actor-Network Approach to AI-Driven Innovation by Egbert Steyn, 
Merwe Oberholzer, Matthew Mullarkey, and Pieter Buys offers a 
compelling and timely contribution. The authors present a robust, 
industry-relevant design approach for developing AI-based decision-
support systems. Through an elaborated ADR process, they guide readers 
through the diagnosis, design, and implementation of a complex supply 
chain application that spans finance, marketing, logistics, manufacturing, 
IT, and strategic development. 

What sets this work apart is its focus on the programmability and 
explainability of AI-driven decision-making across the entire supply chain. 
Grounded in Actor-Network Theory, the book provides a rigorous frame-
work for capturing the complexity of the problem space and for designing 
balanced, human-AI decision-making solutions throughout the project 
lifecycle. 

Perhaps most compelling is the book’s transparency in detailing the 
full development process of an innovative AI application. Readers are 
taken through an iterative, evidence-based journey, with rigorous vali-
dation steps that assess how well the evolving system aligns with the 
goals of human actors, business functions, and the broader social envi-
ronment. Industry professionals will find practical insights into identifying 
and developing AI solutions for complex challenges, while academic audi-
ences will appreciate the actionable lessons drawn from a real-world case 
study using an advanced ADR methodology. 

In sum, Programmable Decisions is a significant addition to the 
growing literature on AI innovation. It exemplifies how to achieve intel-
lectual control in the design of scientifically rigorous and industrially 
relevant AI-driven systems. The authors have delivered a model case study 
that will inform and inspire practitioners and scholars in the field. 

Alan R. Hevner, Ph.D. 
Distinguished University Professor 

Citigroup/Hidden River Chair of Distributed Technology 
School of Information Systems and Management 

Muma College of Business 
University of South Florida 

Tampa, FL, USA 
ahevner@usf.edu
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CHAPTER 1  

Introduction 

Abstract This chapter introduces the book’s core themes, which focus 
on demonstrating the programmability of decisions and enhancing the 
understanding of the required artificial intelligence (AI) culture to 
empower agile organizations in dynamic environments. Consequently, 
the main concepts and their interactions are explained to design an 
AI decision-support model. On one side, integrated within the broader 
context of Industry 4.0, AI-based technologies bring profound soci-
etal changes as they become increasingly embedded in everyday life. On 
the other side is decision-making, which requires distinguishing between 
programmed and non-programmed decisions within AI-based technolo-
gies. The chapter establishes the groundwork for developing an AI 
decision-support model based on Porter’s value chain concept. AI cannot 
operate independently of human involvement, necessitating a balance 
between social and technical objectives within organizations. This leads 
to the socio-technical theory, which underscores the mutual influence 
of humans and machines. The integration of these ideas is crucial for 
applying AI effectively in decision-making. A framework such as actor-
network theory (ANT) is needed to understand how networks of human 
and non-human actors form and function. The chapter thus outlines 
the book’s objectives and describes the research methodology, including 
the concept of action design research (ADR), employed to achieve these 
objectives.

© The Author(s), under exclusive license to Springer Nature 
Singapore Pte Ltd. 2025 
E. Steyn et al., Programmable Decisions for Business Organizations, 
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1.1 Background 

In contemporary managerial decision-making, the increasing importance 
of artificial intelligence (AI) technologies is driven by their ability to 
process vast datasets, identify complex patterns, and deliver unprece-
dented speed and actionable insights. As organizations face dynamic 
environments and heightened competition, AI’s predictive capabilities 
and decision-support tools promise to enable managers to navigate 
uncertainty and make more informed, data-driven decisions. 

Contemporary management research over the past two decades, 
including Cardinal (2001), Daily (2018), Mak and Pichika (2019), and 
Mikulic (2021), has explored various instances of managerial decision 
support in technologically dynamic environments and the efficiency of 
AI-based contexts. The backdrop of an agile and dynamically innovative 
environment, along with the necessity of human decision-makers in this 
context, sets the tone for this book. 

1.2 Artificial Intelligence in Context 

1.2.1 Introduction 

Contemporary organizations operate in a dynamic, rapidly evolving busi-
ness environment that demands continuous operational adjustments. In 
the current Industry 4.0 era, technological developments have signif-
icantly contributed to organizations’ operations, performances, and 
sustainability. Technological changes, defined as the systematic applica-
tion of scientific knowledge to practical tasks (Akpoviroro & Owotutu, 
2018), have accelerated the pace of change (Ross & Maynard, 2021). 
Industry 4.0 contextualizes these changes, with AI-based technologies
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increasingly integrating into daily life and driving radical societal trans-
formations (Ross & Maynard, 2021). Thus, it stands out as a field with 
immense potential for profoundly impacting society. Therefore, organi-
zations should keep up with appropriate technological advancements to 
remain relevant in the contemporary business environment. 

The broader reality of AI-based technologies can be seen as the 
study and development of intelligent machines and software capable of 
reasoning, learning, gathering knowledge, and communication (Pannu, 
2015). As such, it essentially encompasses any technique that mimics the 
human brain, often utilizing concepts such as Machine Learning (ML) or 
Deep Learning (DL) to build models or identify patterns in data. Mak 
and Pichika (2019) state that ML entails data analysis methods that auto-
mate analytical model building using algorithms that iteratively learn from 
data. DL is a deeper subset of AI that processes data and creates patterns 
for decision-making purposes, comprising networks capable of learning 
from unstructured data. 

As indicated, the broad definition of AI and its various supportive 
concepts aim to achieve desired performance-based outcomes in real-
world scenarios. The integration of AI into organizational processes, 
particularly in decision-making, is significant, with rapid advancements in 
AI-based technologies positioning algorithmic decision-makers as critical 
actors (Shrestha et al., 2019). Once considered a discarded technology 
due to early research setbacks, AI is currently experiencing a vigorous 
resurgence, thanks to advancements in computer hardware and software 
(Pan, 2016; Power et al., 2019). This resurgence has arguably enabled AI 
applications across numerous fields, including language understanding, 
learning and modeling abilities, adaptive systems, robotics, and more. 

AI-based technologies can add value through automation, decision 
support, marketing, and innovation, highlighting the importance of inves-
tigating their potential role in decision-making. To enable organizations 
to leverage AI capabilities, Mikalef et al. (2019) identified several internal 
organizational factors as essential for optimizing potential AI capabilities 
(see Fig. 1.1).

As illustrated, data is the foundational departure point for a practi-
cally usable AI system, making it a critical capability when implementing 
such technologies. Since user acceptance is crucial to avoiding failure, a 
supportive AI culture is also essential for success. Furthermore, organiza-
tions need the proper infrastructure and continuous learning abilities to 
sustain the AI environment. Finally, technical and managerial skills entail
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Fig. 1.1 Requisite factors in AI realization (Adapted from Mikalef et al. 
[2019])

identifying future AI skills, including those of trainers (who teach AI 
systems), analysts (who bridge the gap between technologists and business 
leaders), and sustainers (who maintain the systems). This book focuses on 
three key factors: data (subset of operational structures and performance), 
AI culture (trait of socio-technical theory), and technical and managerial 
skills (reflected in decision-making), outlined in the sections below. 

1.2.2 Operational Structures and Performance 

Effective organizations facilitate collaboration among various functions 
and departments (Maduenyi et al., 2015), which is essential for addressing 
low staff morale and ensuring organizational performance (Nene & Pillay, 
2019). While operational structures may vary, the supportive activities 
must be designed to help achieve objectives efficiently in an agile present 
and an uncertain future (Chand et al., 2014). These structures aim to 
identify key performance indicators (KPIs), ensuring an organization’s 
health, effectiveness, and efficiency. Michael Porter’s value chain model 
illustrates a set of business activities that work together to deliver a 
product or service offering. Figure 1.2 illustrates such a generic value 
chain.

As  shown in Fig.  1.2, each activity will be measured using different 
KPIs to achieve and maintain a competitive advantage. In this context,
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Fig. 1.2 Generic value chain concept (Adapted from Porter [2001])

AI-based technologies can streamline decisions within these activities and 
effectively manage each, thereby contributing to a competitive advantage. 
An effective operational structure may foster a positive AI culture, facil-
itating organizational data flow between activities. In turn, AI can assist 
in decision-making to manage KPIs more effectively within the organiza-
tion. Applying the value chain concept to a dynamic industry can identify 
unique activities and their respective KPIs. The value chain concept 
contextualizes an organization’s activities, its KPIs, and the decisions that 
impact them. 

1.2.3 Socio-Technical Theory 

Notwithstanding any perceived benefits, AI cannot operate independently 
of humans within an organization. Creating a culture by balancing the 
organization’s social and technical objectives leads to the emergence 
of socio-technical theory. Originating in Britain’s post-war coal mining 
industry in 1949, socio-technical theory emphasizes the reciprocal rela-
tionship between humans and machines (Ropohl, 1999; Trist, 1981), 
aiming to create an efficient working environment where human workers 
and technology complement each other.
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Over the past 60 years, socio-technical theory has evolved from its 
origins in heavy industry to encompass advanced manufacturing, office-
based work, and services (Davis et al., 2014). This expansion into new 
domains reflects its openness to continual improvement and revision 
(Appelbaum, 1997). During the Industry 4.0 era, effective knowledge 
management and decision-making strategies are essential for achieving 
optimal organizational performance (Abubakar et al., 2019). As such, the 
decision-making style moderates the relationship between knowledge and 
organizational performance. 

Notwithstanding, system effectiveness can only be protected when 
implementing technical changes that correspond to changes in the 
social environment (Davis et al., 2014). Improper management of tech-
nology implementation, including AI-based technologies, can negatively 
affect employee confidence and engagement (Treacy, 2022). There-
fore, applying socio-technical theory concepts becomes essential when 
introducing technologies like AI into organizations. 

1.2.4 Decision-Making 

Decision-making involves a set of steps and procedures to select the 
optimal alternative (Lassoued et al., 2020). Consequently, it depends 
on both technical and managerial skills. Understanding decision-making 
within AI-based technologies requires examining the theoretical building 
blocks of decision-making. Herbert Simon, renowned for his contribu-
tions to bounded rationality and satisficing, has been closely associated 
with management decision-making since the late 1940s (Pomerol & 
Adam, 2004). With the advent of computer technology, Simon recog-
nized them as complex information-processing systems akin to organi-
zations, categorizing decisions from programmed to non-programmed 
(Pomerol & Adam, 2004). This became the basis for the theory of 
programmable decision-making. Table 1.1 summarizes the differences 
between programmed and non-programmed decisions.

According to Table 1.1, programmed decisions are typically repetitive 
or routine, whereas non-programmed decisions involve more complex 
scenarios. Understanding the nature of decisions better facilitates their 
management and integration into AI-enabled systems. In context, AI-
based technologies support fast and efficient decision-making, potentially 
reducing human errors, assisting in repetitive tasks, and fostering inno-
vation (Yarlagadda, 2018), suggesting that AI can be readily applied
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Table 1.1 Decision characteristics 

Characteristic Programmed decisions Non-programmed decision 

Type of problem Structured/routine Unstructured/unique 
Managerial level Middle management Top management 
Recurrence of the problem Repetitive New and unusual 
Judgment Objective Subjective 
Information Available Incomplete 
The time frame for the solution Short Long term 
Solution relies on Procedures/rules Creativity 

Adapted from Paschek et al. (2018)

to programmed decisions due to its repetitive nature. However, AI’s 
capacity for technical innovation also indicates its potential to address the 
complexity of non-programmed decisions (Lawrence, 1991). Therefore, 
there is a strong case for the applicability of AI-based technologies in both 
programmed and non-programmed decision contexts. 

1.2.5 Actor-Network Theory 

All the above concepts need to be integrated to enable the pragmatic 
enablement of AI applications in decision-making. This requires a frame-
work such as actor-network theory (ANT), which has proven invaluable 
in information systems research, offering both theoretical and method-
ological approaches (Walsham, 1997). It has been widely used in science 
and technology since the 1980s (Law, 2009). In this book, networks can 
be seen as uniting actors with a common interest, with ANT ultimately 
enabling an understanding of how these actor networks are formed and 
function. 

While many management theories have typically excluded non-human 
actors, the ANT framework acknowledges both human and non-human 
actors, thus enabling the research of non-human actors in context 
(Heeks, 2013). The exclusion of non-human actors was highlighted while 
attempting to find common ground between ANT and critical realism; 
ANT treats humans and non-humans as causal equals, whereas critical 
realism attributes unique abilities to human actors, necessitating that 
humans be treated differently from non-humans (Elder-Vass, 2008). For 
this book, human actors (e.g., decision-makers) and non-human actors
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Fig. 1.3 Key actors within an ANT-based AI framework 

(e.g., concepts from socio-technical theory and organizational environ-
ment) are treated as equals in the context of AI-enabled decision-making. 
All the actors need to be aligned to optimize the implementation of new 
technologies. 

Figure 1.3 provides an overview of the contextual actors within 
an ANT network, in line with this book’s objectives, to illustrate the 
interworking of all the required AI capabilities. 

As indicated, the concepts of socio-technical theory, the relevant 
decision-makers, and the organizational environment operate interdepen-
dently, and they should be managed as an integrated system within an 
ANT-based AI framework. 

1.3 Defining the Knowledge Gap 

With the resurgence of AI-based technologies in various business fields, 
integrating these technologies into managerial functions within a dynamic 
decision-making environment becomes essential. Furthermore, socio-
technical theory can aid in understanding the reciprocal relationship 
between humans and machines, thereby facilitating the integration of 
new technologies. Therefore, the central knowledge gap addressed in this 
book is understanding (1) the AI decision-making approach and (2) the 
environment (or culture) to empower the organization to utilize new 
technologies.



1 INTRODUCTION 9

Fig. 1.4 Contextual actors 

To empower organizational decision-making, ANT can assist in under-
standing the relationships between integrated systems and human and 
non-human actors, as well as the contextual understanding of perti-
nent technologies. Once this understanding is established, aspects such 
as the programmability of decisions can provide a framework for deter-
mining the level of decision programmability to develop an AI-enabled 
decision-support model. Integrating the earlier-mentioned actors into the 
discussed elements, Fig. 1.4 illustrates these elements as relevant actors 
within the decision-making context. 

Figure 1.4 illustrates the connection between socio-technical theory 
and AI, where AI is integrated into the decision-making processes. AI-
enabled decision-making ultimately supports the KPIs of various business 
functions. 

1.4 Problem Definition and Objectives 

Earlier research by Lawrence (1991) emphasized the need for further 
investigation into the impact of AI-based technologies in ensuring orga-
nizational competitiveness. Introducing Industry 4.0 technologies can 
radically change business systems, necessitating new knowledge for prac-
tical analysis (Pérez-Lara et al., 2019). This change may be so significant 
that it requires reconsidering industry operations (Városiné Demeter 
et al., 2018), which in turn may necessitate an investigation into the 
underpinnings of current KPIs. This initiative contributes to this effort
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and explores how an actor-network approach can set the tone for enabling 
the programmability of management decisions in an AI-driven operational 
environment. 

Since pragmatic research is driven by the need to address real-world 
issues, this qualitative design science-based initiative aims to gain insights 
into AI-enabled decision-making within different organizational cultures 
or environments involving key stakeholders at various levels. This book 
aims to illustrate the programmability of decisions and enhance the under-
standing of the required AI culture to empower decision-making in 
dynamic environments. 

The aspects mentioned above quantify the research problem of how 
a deeper understanding of decision programmability within an AI envi-
ronment is subject to the interplay of socio-technical theory. Therefore, 
in this context, the book’s primary objective is to develop a framework 
that illustrates decision programmability, enabling the creation of an AI 
decision-support model in an AI context to enhance decision-making 
strategies. 

The above objective gives rise to the following sub-objectives:

• Defining the research context and motivating ANT as a concep-
tual framework to embrace other critical theories and frameworks 
pertinent to this initiative, including: 

– Porter’s value chain as a framework to identify KPIs in context. 
– Decision-support models based on decision trees and fuzzy 
logic models. 

– Information technology models based on technology accep-
tance models and value-based adoption models. 

– Socio-technical theory to integrate new technologies by 
addressing human and technical aspects.

• Develop a diagnosis framework to address the issues identified in 
the business problem, the AI culture, and the programmability of 
decisions.

• Develop an initial, practice-inspired, theory-grounded AI decision-
support model that functions in technical and social environments.

• Verify and validate the AI decision-support model to present it as a 
pre-implementation artifact.
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1.5 Development 
of Methodological Justification 

Deciding on an appropriate developmental methodology often begins 
with the researcher’s view of a social phenomenon. This book adopts 
a pragmatic approach, emphasizing the most effective way to address 
research questions, and favors the use of both quantitative and qualita-
tive data to understand social reality (Wahyuni, 2012). In pragmatism, 
knowledge is considered acceptable when it is derived from observable 
phenomena and subjective meanings. Emphasis is placed on practical, 
applied research that integrates diverse perspectives to effectively inter-
pret data. Therefore, the AI decision-support model developed in this 
book will reflect the subjective viewpoints of the researcher-practitioner 
teams involved. 

Regarding the applied design approach, the initiative utilized aspects 
of the elaborated action design research (eADR) approach, as illustrated 
in Fig. 1.5. This approach comprises elaborated iterations, including the 
diagnosis, design, implementation, and evolution iterations, each entailing 
five stages: planning (P), artifact creation (A), evaluation (E), reflection 
(R), and learning interventions (L), as proposed by Mullarkey and Hevner 
(2019). 

This book will primarily focus on the first three iterations of the eADR 
process, as follows:

Fig. 1.5 eADR process (Adapted from Mullarkey and Hevner [2019]) 
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• The diagnostic aspect will entail three iterations, i.e.: 

– Validation and refinement of the experienced business problem. 
– Identifying key activity KPIs through group discussions and 
interviews, ultimately creating a framework for the envisaged 
AI decision-support model. 

– Investigating the concept of a prevailing AI culture to assess AI 
acceptance levels.

• The design aspect will entail one iteration, elucidating the develop-
ment of the initial model based on the findings from the diagnostic 
iterations.

• Prior to the actual implementation of the model, a first (or pre-) 
implementation iteration will be used to refine and validate it using 
industry inputs. 

Embedded in the design sciences, the approach allows continuous inter-
action between academic researchers and knowledgeable industry experts. 
Semi-structured interviews and group discussions with open-ended ques-
tions will serve as qualitative measuring instruments. This ensures that 
the problem domain is thoroughly understood and that the envisaged AI 
decision-support model is adequately validated. 

1.6 Ethical Considerations 

Ethics can be defined as the moral principles that govern or influence 
conduct (Myers & Venable, 2014), and as such, they are fundamental 
to academic and business research. Ethical considerations are paramount, 
particularly when research involves human or animal subjects. Ensuring 
participants’ dignity and ethical treatment throughout the data collec-
tion process is essential. This project followed all relevant ethical research 
guidelines and obtained the necessary institutional approvals. 

The industry participants selected for this project were chosen based 
on their relevant experience. Participation was entirely voluntary, with 
informed consent obtained in writing. No personal or company-specific 
information was collected, and participants retained the right to with-
draw from the project at any time. The data collected focused solely on 
business-related aspects aligned with the book’s objectives, drawing on
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the participants’ industry experience, expertise, and opinions. This infor-
mation was utilized conceptually to inform the design and development 
of a comprehensive model. 

1.7 Book Layout 

This book comprises the following chapters:

• This chapter introduces the topic, including background informa-
tion, critical theories, and the underlying literature review. It also 
presents the book’s problem definition and objectives.

• Chapter 2 explains the development approach and methodological 
assumptions. The chapter also elucidates eADR as the research and 
design approach.

• Chapter 3 focuses on the different actors within the ANT context. 
As the literature shows, this theoretical framework can explain AI’s 
interaction with other actors within a technology-based decision-
making environment.

• Chapter 4 conducts the first eADR diagnostics iteration to estab-
lish the most used and essential KPIs within different organizational 
functions and the corresponding decisions influencing these KPIs.

• Chapter 5 conducts the second eADR diagnostics iteration, focusing 
on socio-technical theory. It aims to establish the necessary AI 
culture within the industry, enabling the adoption of AI technology.

• Chapter 6 conducts the third eADR diagnostics iteration, focusing 
on the degree to which decisions can be programmed, applying the 
theory of decision programmability.

• Chapter 7 aims to develop an initial solution based on the earlier 
diagnostics iterations. Considering the AI culture, it illustrates the 
most pertinent decisions in an organization and their programma-
bility within an AI system. The chapter conducts the design iteration 
to develop the AI decision-support model artifact.

• Chapter 8 subsequently aims to validate the design in the pre-
implementation iteration, gathering further insights from partici-
pants to verify and validate the model, creating a verified artifact. A 
final AI decision-support model is presented, incorporating practical 
input from industry experts.
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• Chapter 9 concludes by illustrating how the model can empower 
dynamic organizations, considering the implementation of AI-based 
technologies within the decision-making sphere. 

1.8 Summary 

Rapid technological advancements have created a need to understand 
and effectively implement fast-evolving technological developments. As 
evidenced by a resurgence in AI-based technologies, it is extensively 
researched and implemented across various organizational domains, 
including decision-making. This chapter briefly highlights the founda-
tional pillars of the book’s approach thus far by contextualizing AI within 
the framework of organizational performance, social-technical theory, 
decision-making, and ANT. The chapter also defines the key objectives 
and highlights the methodological rigor. Socio-technical theory offers a 
comprehensive approach that balances technical and social environments 
to align organizational objectives. The next chapter will elaborate on the 
integrative development methodology within the context of the book’s 
objectives. 
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CHAPTER 2  

Methodological Justification 

Abstract This book followed a systematic research methodological 
process to achieve its objectives: developing an artificial intelligence (AI) 
decision-support model, demonstrating the programmability of decisions, 
and enhancing understanding of the required AI culture to empower 
decision-making. This chapter reveals how Wilson’s honeycomb was 
applied to ensure a logical and systematic process for reaching these 
objectives. In the first component, the philosophical choice includes prag-
matism as epistemology and subjectivism as ontology, embraced by a 
value-bound axiological approach. The second component is the research 
approach, which found inductive reasoning to be more appropriate than 
deductive reasoning. The third is the research strategy, which found qual-
itative research more relevant than quantitative research. The research 
design is the fourth component, where the choice of employing action 
design research (ADR) is justified to guide the empirical research. This 
section also introduces elaborated ADR (eADR), an extension of ADR. 
The fifth and sixth components are data collection and data analysis tech-
niques. Regarding the former, group discussions and interviews were used 
to collect data, while thematic analysis was employed for the latter. 
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2.1 Introduction 

The previous chapter provided an overview of this book’s aim and objec-
tives. This chapter will outline the underlying research and design process 
used to achieve these goals. Singh (2006) defines key research character-
istics as a sound philosophy, insights and imagination, a transdisciplinary 
approach, and a desire to improve. These characteristics underscore the 
importance of creativity, problem-solving, and knowledge in managing 
multidisciplinary teams. Ultimately, the book’s applied research approach 
is expected to contribute to understanding the interplay between the 
programmability of management decisions and artificial intelligence (AI)-
driven initiatives within the context of an actor-network theory (ANT) 
environment. 

2.2 Methodological Justification 

2.2.1 Introduction 

This initiative adopted the honeycomb approach (per Wilson, 2014) to  
explain the different components of the approach applied in this book, as 
illustrated in Fig. 2.1.

Figure 2.1 outlines the six integrated research components. The first 
three (i.e., the philosophy, approach, and strategy) are considered foun-
dational core concepts, while the remaining three (i.e., the design, data 
collection, and data analysis) encompass the execution aspects. 

2.2.2 Philosophy 

Research philosophies reflect the researcher’s views, influencing the 
approach applied, with the underlying paradigms crucial for providing 
focus and guiding the research efforts as unpacked below:

• Epistemology involves assumptions about knowledge, i.e., what is 
considered acceptable, valid, and legitimate, and how it can be 
communicated. In this context, positivism asserts that different
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Fig. 2.1 Honeycomb methodology (Adapted from Wilson [2014])

researchers will reach the same conclusions; post-positivism acknowl-
edges that knowledge is shaped by social conditioning while inter-
pretivism argues that social actors and their perceptions construct 
reality and seek to uncover the deeper meaning of social phenomena 
(Wahyuni, 2012). In contrast, pragmatism does not align with any 
specific paradigm but focuses on pragmatic approaches to solving 
real-world research problems (Kelly & Cordeiro, 2020). This initia-
tive adopts the latter approach, recognizing the value of diverse 
perspectives and qualitative data in understanding a real-life scenario.

• Ontology, in the context of management studies, reflects on how the 
world operates. O’Gorman and MacIntosh (2015) explain ontology 
through objectivism, which views social reality as external to the 
researcher and participants and aims to identify causal explana-
tions and fundamental laws, and subjectivism, which asserts that the 
perceptions and actions of participants shape reality. Considering the 
objectives of this initiative, our approach required interactions with 
participants to gather qualitative data, thereby positioning the book 
within a subjective ontological framework.

• Axiology: The final aspect of axiology focuses on the role of values 
and ethics. The ethical considerations pertinent to this section are 
outlined in Sect. 1.6: Ethical Considerations. Fundamentally, this 
initiative employs a subjective philosophical approach, which epis-
temologically aligns with a pragmatist view, treating information
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as the unique opinions of knowledgeable participants. Ontologi-
cally, it assumes that reality is understood through interaction with 
these participants. As such, the axiological approach is value-bound, 
ensuring the researcher ethically engages with participants. 

2.2.3 Approach 

Wilson (2014) suggests that research can follow either an inductive 
approach, which moves from specific observations to broader general-
izations, or a deductive approach, which starts with general principles 
and narrows down to specific instances. Given the objective’s focus on 
explaining findings from specific cases to broader conclusions, rather than 
retesting data, an inductive approach will be used. This method aligns 
with previous research, such as Petersson et al. (2022), who success-
fully employed an inductive approach to studying the implementation 
challenges of AI-based technologies. 

2.2.4 Strategy 

The third element of the honeycomb methodology is strategy, typi-
cally categorized as either quantitative, explaining phenomena through 
numerical data and mathematical evaluation, or qualitative, producing 
findings that are not based on statistics or quantification (Yilmaz, 2013). 
Therefore, quantitative research aims to generalize outcomes, whereas 
qualitative research explores processes or phenomena in-depth to support 
theory building (Cruz & Tantia, 2017). In justifying the approach 
followed herein, quantitative research in technology supports theory 
testing, while qualitative research is better suited for theory construction 
(Pearse, 2021). Given our approach to technology research and the spec-
ified book objectives, seeking to comprehend decision-making models in 
AI-based technologies rather than measure them, a qualitative approach 
is most appropriate. While quantitative approaches focus on measuring 
social phenomena, qualitative approaches aim to understand the meaning 
behind them.
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2.2.5 Design 

The choice of research method depends on the needed information, and 
understanding the philosophical assumptions helps guide the research 
process (Al-Ababneh, 2020). An action design research (ADR) approach 
provides procedural guidance, conceptual frameworks, and techniques 
for documenting project tasks (Cronholm & Göbel, 2022). It typically 
follows four stages, each guided by principles that form the foundation of 
the ADR design, as illustrated in Fig. 2.2. 

The illustrated stages entail the following:

• Stage 1 identifies a perceived problem and is guided by two prin-
ciples, requiring the research to be practice-inspired, to generate 
knowledge applicable to the broader class of problems, and to inte-
grate new artifacts with theory, ensuring that they take on a socially 
recognizable form by embedding theoretical elements.

• Stage 2 uses the earlier problem identification and theoretical 
assumptions to create artifacts developed through iterative cycles of 
collaboration between researchers and practitioners.

Fig. 2.2 ADR stages (Adapted from Sein et al. [2011]) 
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• Stage 3 involves reflection and learning. During this stage, the 
research team reflects on the problem and the theories employed, 
adjusting the process and theory as new insights emerge.

• Stage 4 is the formalization of learning, where the solutions devel-
oped are generalized to address broader classes of problems. 

Figure 2.3 illustrates the iterative interactions between researchers and 
practitioners in the development of solutions through iterative processes. 

Mullarkey and Hevner (2019) introduced critical interventions to 
make knowledge creation more explicit in the ADR process. Their inter-
pretation, known as elaborated ADR (eADR), still recognizes ADR’s 
iterative nature but adopts a multistage approach, as opposed to the 
single build, intervention, and evaluation stage used in conventional 
ADR, as illustrated in Fig. 1.5. In this context, the book’s approach 
is grounded in a reciprocal research-practitioner approach, where both 
parties play influential roles. It utilizes theory-grounded models, such as 
ANT and socio-technical theory, to explore AI in decision-making. Arti-
facts will evolve through the design of research and organizational use,

Fig. 2.3 Building, intervention, and evaluation cycles (Adapted from Sein et al. 
[2011]) 



2 METHODOLOGICAL JUSTIFICATION 25

reflecting a guided emergence. Adopting an eADR approach, the initia-
tive will focus primarily on diagnosis and design iterations, as well as a 
pre-implementation iteration. 

2.2.6 Data Collection 

2.2.6.1 Introduction 
Researchers should validate their chosen methods, recognizing both 
their strengths and limitations (Kairuz et al., 2007). In attaining the 
book’s objectives, group discussions and interviews were the primary data 
collection methods, as elucidated below:

• Firstly, group discussions were used to define the industry prac-
titioners’ perceptions on a specific topic, yielding qualitative or 
quantitative data. Seven types of group discussions can be identified, 
each with a different approach, as follows: 

– Single focus groups, where participants interact on a specific 
topic. 

– Two-way focus groups in which one group discusses while 
another observes. 

– Dual-moderator focus groups, where two moderators, each 
with distinct roles, facilitate the discussion. 

– Dueling-moderator focus groups with moderators with 
opposing views. 

– Respondent-moderator focus groups in which a participant 
temporarily moderates. 

– Mini-focus groups entail a small group of experts. 
– Online focus groups that are conducted via the Internet and 
related technologies. 

According to T. O. Nyumba et al. (2018), larger groups 
can often be challenging to manage and limit data diversity. 
Hence, this initiative applied a mini-focus group approach to 
extract qualitative data from industry experts. According to 
Onwuegbuzie et al. (2009), a mini-focus group might involve 
three to four participants with specialized knowledge. As such, 
the mini-focus groups should strike a balance, offering enough 
diversity while creating a comfortable environment for in-depth 
discussion.
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• Secondly, interviews are conversations designed to gather informa-
tion (Joshi, 2018), which involve in-depth questions that describe 
participants’ experiences (Cruz & Tantia, 2017). They are effec-
tive in data collection for ANT due to their focus on organizational 
processes (Zawawi, 2018). To meet the book’s objectives, structured 
interviews with more specific questions and unstructured interviews 
with no predetermined questions were conducted, allowing for 
flexibility to explore new topic avenues as needed. 

2.2.6.2 Application of Group Discussions and Interviews 
Due to their interactive nature, group discussions were initially used for 
data collection, followed by interviews with senior participants to validate 
and expand the findings for the next eADR iteration. 

Considering the sample size, researchers should determine and contin-
uously assess its size. In qualitative research, there is no standard for 
sample size; instead, the concept of saturation is used. According to 
Malterud et al. (2016), saturation involves comparing new observations 
with prior analyses to identify characteristics. An approach supplemen-
tary to this is informed power, which states that the more information the 
sample holds that relates to the study, the fewer participants are needed. 

This initiative will commence with a select group of participants chosen 
for their relevant expertise (Cruz & Tantia, 2017), followed by the 
recruitment of additional participants through snowball sampling. This 
method effectively reaches hidden populations and aligns with the need 
for smaller samples in specialized research (Etikan et al., 2016). 

2.2.6.3 Verification and Validation 
For this book, verification is defined as the evaluation of an artifact 
to ensure it meets the design conditions set at the start of a develop-
ment phase, while validation is defined as ensuring the artifact meets the 
specified requirements and the needs of stakeholders, as per Ryan and 
Wheatcraft (2017), as conceptualized in Fig. 2.4.

As illustrated in Fig. 2.4, the approach followed entailed the contin-
uous verification and validation throughout the overall development 
process. As such, the suggested AI model will align with initial design 
requirements and address the experienced business issue. 

Regarding verification, the pertinent measurement criteria are whether 
the various eADR stages address the research objectives and whether
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Fig. 2.4 Continuous verification and validation (Adapted from Ryan and 
Wheatcraft [2017])

the final framework meets them. Regarding validation, the measurement 
criteria revolve around whether the research objectives adequately address 
the problem, whether the eADR approach provides the necessary knowl-
edge, and whether the final decision-support model effectively supports 
AI-driven decision-making environments. 

2.2.7 Data Analysis Techniques 

The final component of the honeycomb approach involves evaluating the 
collected data. After gathering data from interviews, the next step is to 
analyze it thoughtfully and communicate its insights clearly, in line with 
the book’s objectives (Zawawi, 2018). Thematic analysis is the most suit-
able method for this task, as it systematically identifies and organizes 
themes from the data (Alhojailan, 2012; Braun & Clarke,  2012). This 
method is known for its accessibility, flexibility, and popularity in qual-
itative data analysis. Thematic analysis is arguably also easy to learn and 
accessible to researchers with limited experience, offering the potential for 
unexpected insights.
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2.3 Summary 

This chapter aims to justify the research approach employed in achieving 
the book’s objectives. It details the research and design process, guided by 
the honeycomb methodology, which encompasses epistemological, onto-
logical, and axiological assumptions. The approach adopted an inductive, 
qualitative approach with eADR as the applied research approach. Data 
collection methods included group discussions and interviews, which 
were analyzed thematically. 

With the established methodological assumptions and theoretical foun-
dations in place, the next chapter will present the underlying ANT 
foundations, elucidating the contextual actors and their respective roles. 
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CHAPTER 3  

Theoretical Foundation 

Abstract This chapter aims to elucidate the concept of actor-network 
theory (ANT), which is valuable in systems and technology research, 
particularly where human and non-human actors are treated as equals. 
The contextual application of ANT in this book is illustrated in a socio-
technical environment to better systematize the social aspects of technical 
work. Three progressive moments of translation stages are explained: 
problematization, interessement, and enrollment. Porter’s value chain 
contextualizes the problematization stage by helping to identify possible 
key performance indicators in the organization’s activities, explaining how 
decision-makers utilize artificial intelligence (AI)-based technologies as 
actors in the context of ANT applications. The interessement stage aims 
to lock human and non-human actors in their roles, illustrating decision-
making in an AI environment where decision-support models are based 
on decision trees and the more advanced concept of fuzzy logic models. 
Furthermore, the technology acceptance model (TAM) and the value-
based adoption model (VAM) are introduced as key models in the study 
of technology acceptance. Lastly, enrollment involves the coordination 
and alignment of actors’ roles, illustrating how the concepts of socio-
technical theory effectively integrate new technologies by addressing both 
human and technical aspects.
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3.1 Introduction 

Whereas the previous chapter provided insights into the research and 
development process, this chapter elucidates the underlying theories by 
identifying the contextual actors and their roles in relation to the concepts 
of problematization, interessement, and enrollment, thereby illustrating 
the integrated nature of the approach using socio-technical theory. 

The underlying theories provide a lens through which to view reality, 
using explanatory concepts to understand events and actions. Actor-
network theory (ANT) has proven particularly valuable in information 
systems and technology research, for example, by analyzing human and 
non-human social media actors (Hajli et al., 2022) or demonstrating its 
successful application in artificial intelligence (AI) across various fields 
(Pollack et al., 2013). 

3.2 Actor-Network Theory 

3.2.1 Basic Concepts 

A key goal of ANT is to understand how networks of shared interests 
are formed and sustained and why some fail (Walsham & Sahay, 1999). 
Despite ANT’s varied methodological and analytical approaches, certain 
concepts remain relatively stable, as shown in Table 3.1.

In the context of this book’s objectives, ANT’s effectiveness in infor-
mation technology stems from its principle of general symmetry, where 
human and non-human actors are treated as equals. To qualify as an actor 
within ANT, non-human entities must be capable of acting; for example, 
Pollack et al. (2013) noted that project plans can inform, schedules can
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Table 3.1 Key concepts of ANT 

Concept Definition 

Actor/actant Any material, human or non-human 
Actor-network Related actors in a heterogeneous network of aligned interests 
General symmetry The symmetrical treatment of humans and non-humans as a priori 

equals 
Translation The ordering of actors through negotiating or maneuvering others’ 

interests to one’s own 
Inscription Introduction of artifacts that would ensure the protection of 

interests 

Adapted from Adaba and Ayoung (2017) and Jackson (2015)

dictate, budgets can constrain, and planning can limit. The concept, illus-
trated by Jackson (2015), involves a ball in a game actively shaping 
relationships between (1) the players themselves and (2) the players and 
the ball. This reflects the definition of an actor network, where related 
actors within a heterogeneous network (or system) share aligned inter-
ests. The formation or failure of a network occurs through a process called 
translation, which involves four progressive stages, as shown in Fig. 3.1. 

Figure 3.1 illustrates the four moments of translation in network 
formation as follows:

Fig. 3.1 Network translation (Adapted from Zawawi [2018]) 
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• Problematization, as the starting point of the process, defines all the 
actors and formalizes the alliances pertinent to the scenario.

• Interessement occurs when the actors reach a pivotal point, 
convinced that their alliances can fulfill their collective interests and 
secure their roles in the network.

• enrollment, where actors’ roles are defined and coordinated.
• Mobilization ensures that actors are adequately represented, creating 
a stable network. 

3.2.2 Contextual Application of ANT 

In alignment with Gumede and Tladi (2023), who proposed the contex-
tual application of ANT in a socio-technical environment to better 
systematize the social aspects of technical work, Fig. 3.2 illustrates the 
contextual application of ANT in this book. 

Figure 3.2 indicates the following:

• During the problematization stage, the focal point actor identifies 
the problem and proposes a potential solution, which enables the

Fig. 3.2 ANT application (Adapted from Gumede and Tladi [2023]) 
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identification of possible actors for the network. Initially, all human 
and non-human entities are considered equal in negotiation.

• During the interessement stage, roles are assigned to other actors 
within the network, which may include translators who mediate 
between source and target actors. This stage involves negotiations 
among actors to align their interests, suggesting that each moment in 
ANT development has its passage points that actors might navigate 
as the network evolves.

• During the enrollment stage, all actors have been identified, and 
their roles are confirmed within the network, recognizing that 
the network can achieve its intended goals while supporting their 
interests. 

The following sections will integrate the underlying concepts within the 
ANT framework application, using the three moments of translation (as 
illustrated in Fig. 3.2) to demonstrate the creation of a network of 
humans and non-humans. Such networks, driven by aligned interests, will 
be used to develop the envisaged AI-enabled decision-support model. 

3.3 Problematization 

3.3.1 Porter’s Value Chain 

The first step in applying ANT is identifying all network actors, including 
decision-makers and technologies. Porter (2001) described the well-
known value chain concept, which will be used to identify the initial 
decision-making actors and the connections between employees and 
technology. 

In striving for a competitive advantage, Porter (2008) argues that 
organizations should be viewed as a series of distinct yet interrelated 
activities working together to deliver a specified outcome, such as a 
product or service. The primary activities add value at different stages 
as the incomplete deliverable progresses through these activities, while 
the support activities provide assistance. For the purposes of this book, 
Porter’s generic value has been adapted to illustrate possible primary and 
support activities in an organization, as shown in Fig. 3.3. Analyzing 
each activity in context should arguably make it possible to identify the 
context-applicable key performance indicators (KPIs).
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Fig. 3.3 Contextual value chain (Adapted from Porter [2001]) 

The value chain concept and its underlying philosophies have been 
adapted in areas and applications beyond individual firms (Zamora, 
2016), as evidenced by its application in:

• The assessment of the impact of technological innovations (Moreno-
Brieva & Merino-Moreno, 2021).

• The evaluation of industries with limited literature, such as the 
elderberry industry (Cernusca et al., 2012).

• The examination of how 5G technology can support the value chain 
(Rejeb & Keogh, 2021). 

The mentioned studies demonstrate the applicability of value chain 
concepts in various industry contexts and technological investigations. By 
evaluating the activities within individual value chain activities, including 
the value chains that comprise a specific supply chain, we argue that a very 
pragmatic approach to understanding an organization can be developed.
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Fig. 3.4 Conceptual supply chain processes (Adapted from Mehralian et al. 
[2015]) 

3.3.2 Decision-Making 

3.3.2.1 Value Chain Guided Decision-Making 
By focusing on the supply chain, Mehralian et al. (2015) deepened 
the understanding of the role of the value chain concept in managerial 
decision-making and operational analysis. Figure 3.4 illustrates potential 
key factors herein. 

Figure 3.4 illustrates the primary activities and the underlying deci-
sion contexts that may be found in a manufacturing and distribution 
environment. Analyzing these activities should greatly enhance contex-
tual decision-making and KPI management. Understanding these factors 
should also enable the exploration of how AI can support decision-
making. 

3.3.2.2 AI as Actor 
A significant challenge in AI-based technologies is mimicking the human 
ability to learn and adapt through reading, studying, and experience. As 
such, AI-based technologies strive to achieve machine intelligence, which 
is defined as the ability to compute and achieve the stated management 
objectives. According to González García et al. (2019), the current efforts 
aim to enable machines to recognize human language and replicate deci-
sions based on logical, algorithmic-based rules. In applying such logic, 
AI mimics the human brain in solving industry-specific challenges, such 
as optimizing transportation (Abduljabbar et al., 2019), conducting sales
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and marketing analyses for market segmentation (Tiwari et al., 2020), or 
detecting fraud (Pallathadka et al., 2021). In doing so, it is used across 
various sectors, including data mining, expert systems, data classification 
(González García et al., 2019), gaming, language understanding (Pannu, 
2015), and data management through machine learning (Jelley, 2022). 
Therefore, AI-based technologies can arguably be seen as actors in the 
context of ANT applications. 

Specifically applicable to the context of this book, AI-based technolo-
gies are also applied to more complex operational processes (Wafa’H 
et al., 2021), with their application spanning a significant portion of the 
conceptual supply chain, as illustrated in Fig. 3.4. In this context, three 
key actors emerge, i.e., (1) the decision-makers within the value chain, (2) 
the AI systems, and (3) the organizations they operate within. Each actor 
influences the others as they work towards achieving specific objectives. 

3.4 Interessement 

The primary objective of the interessement stage is to lock the actors 
into their roles. For this to happen, human actors must understand how 
AI-based technology works. This understanding provides a framework 
for evaluating the programmability of decision-making within a specific 
context. 

3.4.1 Understanding Decision-Making 

To fully grasp decision-making in an AI environment, it is crucial to 
have a foundational understanding of the decision-making concept and, 
ultimately, how decisions are made. Martin et al. (2009) state that an 
essential aspect of decision-making is defining an objective and what 
the decision-maker aims to achieve. Bohanec (2003) argues that the 
essence of decision-making entails assessing the problem, identifying 
alternative solutions, making a logical evaluation between such alterna-
tives, and selecting the preferred alternative. Through the progression 
of the industrial revolutions, the concept of decision-making has evolved 
to incorporate data-driven approaches, including machine learning and 
automated decision-making (Elgendy et al., 2022). Therefore, given the 
specific scenario’s context, decision-making aims to pick the optimum 
alternative to achieve a specified objective.
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3.4.2 Decision-Support Models 

Early literature recognized decision trees as a pragmatic approach to 
modeling the decision-making process (Magee, 1964). Many contem-
porary studies, such as Avellaneda (2020) and Hu et al. (2019), have 
focused on their optimization. At its core, decision trees map out various 
decision routes leading to different outcomes, assessed against the objec-
tives specific to the scenario, culminating in positive (P) or negative 
(N) outcomes. Figure 3.5 shows a simple decision tree illustration for 
a make-or-buy decision. 

As indicated, the path for the decision will lead to one of four 
outcomes. The root node represents the initial question, with internal 
nodes connected by branches leading to leaf nodes representing outcomes 
(Lee et al., 2022). Best practice involves ensuring that each internal 
node has a corresponding leaf node to avoid excessive internal nodes and 
complex decision trees, which can impact reliability (Song & Ying, 2015). 

Each internal node may also involve different considerations, which 
can be visualized using an influence diagram. As shown in Fig. 3.6, this  
helps to identify critical issues and support decision tree analysis.

Figure 3.6 shows the additional components to be included in the 
decision tree concept, further refining the alternatives. As such, these 
considerations may impact the decision’s outcome, altering the decision 
path and leading to different outcomes. As illustrated, the total cost 
per product (as a KPI example) is linked to the make-or-buy decision,

Fig. 3.5 Conceptual decision tree 
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Fig. 3.6 Conceptual influence diagram (Adapted from Chelst [2013])

potentially influenced by various levels of influence such as productivity, 
logistics, oversights, and process controls, which in turn may be influ-
enced by the next level considerations such as variable costs, fixed costs, 
and quality. 

A criticism against the decision tree concept is a potential lack of 
flexibility. Since decision outcomes may not always be binary, as illus-
trated in Fig. 3.5, introducing additional variables in context after model 
development can be challenging. Fuzzy logic has emerged to address 
the limitations of traditional models that rely on binary outcomes. This 
approach can handle more complex outcomes and develop rule-based 
behaviors (González García et al., 2019; Phillips-Wren, 2012). Figure 3.7 
contrasts a fuzzy logic approach with the traditional decision tree concept 
in the context of a knowledge rule base.

As illustrated, in a rule-based (fuzzy logic) approach, the outcomes 
range from “0” to “1,” such as Very (0.9), Moderate (0.7), Slightly 
(0.25), or Not (0.1), compared to a binary (decision tree) outcome of 
Yes (1) or No (2). The rule-based system allows for some interpretation 
of user queries, such as determining whether it is cold outside, utilizing a 
so-called inference engine that contains the rules upon which the logic is 
based. This allows for more nuanced information for decision-makers. 

The inference system evaluates users’ input data or queries using the 
knowledge rule base parameters, upon which the outputs are formulated. A
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Fig. 3.7 Knowledge rule base concept (Adapted from Sarker [2022])

critical advantage hereof is adaptability, which, according to Phillips-Wren 
(2012), can be refined with new information, thereby enhancing control 
throughout decision-making. Fuzzy logic improves decision-making and 
performance management (Chan et al., 2002) and has been applied to 
specific analysis areas, such as:

• Financial and operational management, e.g., cost-volume analysis 
(Yuan, 2009).

• Indoor climate control based on external weather conditions 
(Meana-Llorián et al., 2017).

• Personal entertainment, such as video streaming services (Bagchi, 
2011). 

Thus, fuzzy logic is a viable approach for considering variables in decision-
making, offering a framework for evaluating ranges of possible outcomes. 

3.4.3 Decision-Making Within AI 

As AI-based technologies become increasingly integrated into daily life, a 
critical issue is how these systems can effectively coexist with humans. This 
book focuses on coexistence in the context of business decision-making. 
To this effect, Shrestha et al. (2019) examined four AI decision-making 
approaches as follows:

• Full AI;
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• Sequential AI to Human (S_AI - H);
• Sequential Human to AI (S_H - AI); and
• Aggregated Human to AI (A_H - AI). 

These approaches were assessed across five areas as follows:

• Decision search space—between high and low.
• Interpretability—between high and low.
• Alternative set size—between large and small.
• Decision speed—between fast and slow.
• Replicability—indicated as its potential impact on either humans or 
AI. 

These findings are summarized in Table 3.2. 
As indicated, AI-based technologies increase the need for decision 

search spaces, while human intervention reduces it. AI also affects deci-
sion interpretability, potentially causing delays before implementation. 
Humans typically limit outcome options, constrain decision results, and 
slow decision-making by acting as bottlenecks in three approaches. Due 
to its algorithmic nature, AI facilitates replicable decision outcomes. Rele-
vant to the book’s objectives, Alami et al. (2020) identified AI readiness, 
stakeholder acceptance, technology alignment, and a business plan as 
important factors. 

Regarding the programmability of decisions, Herbert Simon, a pioneer 
in decision-making theory, classified decisions along a spectrum from 
programmed to non-programmed (Pomerol & Adam, 2004). On this 
spectrum, programmed decisions are structured and predictable, whereas 
non-programmed decisions are more ambiguous. Saaty (1978) expanded

Table 3.2 AI approaches to organizational decision-making 

Approach Decision 
search space 

Interpretability Alternative 
set size 

Decision 
speed 

Replicability 

Full AI High Low Large Fast High: AI 
S_AI - H High to low High Large Slow Low: human 
S_H - AI Low to high Low Small Slow Low: human 
A_H - AI Low High Small Slow Partial: AI 

Adapted from Shrestha et al. (2019) 
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this by introducing structured, semi-structured, and unstructured choices 
based on their outcomes. Structured decisions, therefore, would have 
more known outcomes, while unstructured decisions would involve 
higher levels of uncertainty. 

3.4.4 Information Technology Acceptance Models 

According to Pasmore et al. (2019), contemporary system design has 
shifted from one-time optimization efforts to continuous, agile approaches. 
In such an environment, implementing new technologies requires a 
socio-technical system design approach, rather than a purely technolog-
ical design approach (Coiera, 2007), making it essential to understand 
the scenario-specific user culture. Several so-called technology acceptance 
models (TAM) aim to elucidate the relationship between users’ attitudes 
and the actual practical application of technology. In the context of this 
book’s objectives, the TAM and the value-based adoption model (VAM), 
per Erasmus et al. (2015), are arguably the most relevant in our context. 
Sohn and Kwon (2020) state that although TAM is widely used to study 
technology adoption behavior, it does not consider external factors. As an 
extension of TAM, VAM incorporates enjoyment, perceived benefits, and 
sacrifices, and is deemed applicable to AI-based scenarios. 

3.4.4.1 Technology Acceptance Model 
In response to the technology boom of the 1970s and subsequent adop-
tion failures, a model was needed to predict system usage. Davis (1985) 
developed a model to measure potential users’ attitudes toward new 
systems, as shown in Fig. 3.8.

As indicated, TAM posits that system usage is shaped by users’ attitudes 
towards the system, which are affected by its perceived usefulness and ease 
of use. These perceptions are affected by various factors, indicated as X1, 
X2, and X3. 

VAM emphasizes that technology adoption hinges on comparing 
unknown benefits against uncertain costs (Kim et al., 2007). The model 
assumes that the system will be adopted if users believe it will enhance 
job performance and that the benefits outweigh the effort required.
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Fig. 3.8 Technology acceptance model (Adapted from Davis [1985])

3.4.4.2 Value-Based Adoption Model 
The VAM approach was developed to complement the TAM approach, 
particularly in the adoption of new technologies (Lin et al., 2012). It is 
depicted in Fig. 3.9. 

Fig. 3.9 Value-based adoption model (Adapted from Kim et al. [2007])
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As illustrated, VAM considers two critical aspects: the perceived benefits, 
such as the system’s usefulness and enjoyment, and the perceived sacri-
fices, including technical difficulty and adoption costs, associated with 
adopting the new system. While TAM focuses on user attitudes toward 
new technology, VAM also considers users’ adoption intentions. 

Therefore, in the contextual application of ANT, the interessement 
phase introduces human actors to decision trees to understand AI 
decision-making by applying TAM and VAM, which will also extend the 
user attitudes and adoption view assessments with the enrollment phase. 

3.5 Enrollment 

Enrollment involves coordinating and aligning the roles of the actors to 
achieve the network’s objectives. To achieve this, a socio-technical frame-
work will illustrate the integrated relationships between the human and 
the non-human actors. 

3.5.1 Socio-Technical Theory 

Research into both technical and social aspects has long recognized 
the profound impact of technological innovation on society. Further-
more, Pasmore et al. (2019) noted that the gap between technological 
advancements and organizational design, or alternatively, the gap between 
technological sophistication and societal acceptance thereof, has widened 
in recent times, making socio-technical theory more relevant as Industry 
4.0 technologies continue to disrupt the business environment. 

Applying socio-technical concepts is crucial for understanding how 
to effectively integrate new technologies, addressing both the human 
and technical aspects (Murphy, 2022; Sekgweleo et al., 2017). These 
conceptual interactions are illustrated in Fig. 3.10.

As illustrated, people within organizations interact with each other and 
with technological systems, which involve the physical system (i.e., the 
hardware) and the task aspects (i.e., the software). 

Therefore, implementing a new system requires more than just 
technical considerations. Successful technology implementation requires 
considering the complex interaction between such actors and under-
standing how the organizational culture could better leverage techno-
logical resources (Pasmore et al., 2019). As such, socio-technical theory
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Fig. 3.10 Humans versus technology interaction (Adapted from Oosthuizen 
and Pretorius [2016])

involves using technology within a social structure to achieve specific 
objectives. 

3.5.2 Socio-Technical Application 

Building on the above, such integration triggers various levels of social 
and technical effects within the organization, as illustrated in Table 3.3.

Table 3.3 outlines the different interaction levels and key characteris-
tics when implementing new technologies, evolving from the first level 
of algorithms through computer programming, the interaction between 
humans and computers, and ultimately a socio-technical system. The 
latter is ideally where the human and the technological actors work 
towards a common goal. In the context of this book’s objective, we 
agree and note that the complex human interactions in contemporary 
industry make it particularly suitable for socio-technical theory. Further-
more, designing socio-technical systems requires a systems approach, as 
illustrated in Table 3.4.
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Table 3.3 Socio-technical levels 

Level Characteristic 

Algorithms A formal representation of a process for 
accomplishing something 

Computer program Computer programs are the computational 
form of algorithms 

Human–computer interaction The physical and metaphorical ways users 
interact with computers 

Socio-technical systems Socio-technical systems analysis examines how 
human-technology interactions influence human 
interactions 

Adapted from Coiera (2007)

Table 3.4 Socio-technical approach 

System 
element 

Definition 

Boundaries System boundaries are defined to ensure security and allow for system 
expansion 

Internal 
structure 

System internal structures ensure system reliability and flexibility. Internal 
structures ensure that the system is reliable and flexible 

Effectors System effectors utilize resources to respond to the environment, 
ensuring desired functionality and usability 

Receptors System receptors handle communication between systems, ensuring 
connectivity and privacy 

Adapted from Whitworth (2009) 

Socio-technical theory explores the interactions between humans and 
technologies to achieve specific goals. Table 3.4 illustrates these inter-
dependencies in a systems thinking context. Therefore, with the actors, 
goals, and interdependencies confirmed and models such as TAM and 
VAM applied, the actor-network will focus on empowering manage-
ment decision-making by advancing the understanding and utilization of 
technologies like AI.
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3.6 Summary 

This chapter justifies the theoretical foundations that support the devel-
opment of the envisioned AI decision-support model, aligning with the 
book’s objective. In doing so, it illustrated how an understanding of 
the programmability of decision-making within an AI environment can 
be influenced by socio-technical thinking. It also illustrated the roles of 
different actors within ANT, covering the first three translation moments. 
During problematization, actors were identified using Porter’s conceptual 
value chain, and decision-making within this framework was examined. 
Under interessement , decision-making in AI environments was explored 
with decision trees, influence diagrams, and fuzzy logic to address deci-
sion programmability. Finally, enrollment was achieved by demonstrating 
interdependent relationships between human and non-human actors 
through socio-technical theory. The next chapter will elaborate on the 
finer details of the design science-based approach used to develop the 
envisioned AI decision-support model. 
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Bohanec, & S. Moyle (Eds.), Data mining and decision support (pp. 23–35). 
Springer. 

Cernusca, M., Gold, M., & Godsey, L. (2012). Using the porter model to 
analyze the US elderberry industry. Agroforestry Systems, 86(3), 365–377.

https://ojs.aaai.org/index.php/AAAI/issue/view/252


3 THEORETICAL FOUNDATION 49

Chan, D. C., Yung, K. L., & Ip, A. W. (2002). An application of fuzzy sets 
to process performance evaluation. Integrated Manufacturing Systems, 13(4), 
237–246. 

Chelst, K. (2013). The soft side of making decisions. Industrial Engineer: IE, 
45(1), 35–40. 

Coiera, E. (2007). Putting the technical back into socio-technical systems 
research. International Journal of Medical Informatics, 76, S98–S103. 

Davis, F. D. (1985). A technology acceptance model for empirically testing new 
end-user information systems: Theory and results (PhD Thesis). Massachusetts 
Institute of Technology. 

Elgendy, N., Elragal, A., & Päivärinta, T. (2022). DECAS: A modern data-driven 
decision theory for big data and analytics. Journal of Decision Systems, 31(4), 
337–373. 

Erasmus, E., Rothmann, S., & Van Eeden, C. (2015). A structural model of 
technology acceptance. SA Journal of Industrial Psychology, 41(1), 1–12. 

González García, C., Núñez Valdéz, E. R., García Díaz, V., Pelayo García-
Bustelo, B. C., & Cueva Lovelle, J. M. (2019). A review of artificial 
intelligence in the Internet of Things. Artificial Intelligence Applications, 
5(4), 9–20. 

Gumede, N., & Tladi, B. (2023). Socio-technical systems: Using actor-network 
theory to make the social more tangible in a technical space. The South African 
Journal of Industrial Engineering, 34(3), 140–155. 

Hajli, N., Saeed, U., Tajvidi, M., & Shirazi, F. (2022). Social bots and the spread 
of disinformation in social media: The challenges of artificial intelligence. 
British Journal of Management, 33(3), 1238–1253. 

Hu, X., Rudin, C., & Seltzer, M. (2019). Optimal sparse decision trees. Advances 
in Neural Information Processing Systems, 32. 

Jackson, S. (2015). Toward an analytical and methodological understanding of 
actor-network theory. Journal of Arts and Humanities, 4(2), 29–44. 

Jelley, S. (2022). What is the role of AI and ML in data manage-
ment. https://www.forbes.com/sites/forbesbusinesscouncil/2022/05/12/ 
what-is-the-role-of-ai-and-ml-in-data-management/. Date of access: 21 
September 2022. 

Kim, H.-W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile 
internet: An empirical investigation. Decision Support Systems, 43(1), 111–126. 

Lee, C. S., Cheang, P. Y. S., & Moslehpour, M. (2022). Predictive analytics in 
business analytics: Decision tree. Advances in Decision Sciences, 26(1), 1–29. 

Lin, T.-C., Wu, S., Hsu, J. S.-C., & Chou, Y.-C. (2012). The integration of 
value-based adoption and expectation–confirmation models: An example of 
IPTV continuance intention. Decision Support Systems, 54(1), 63–75. 

Magee, J. F. (1964). Decision trees for decision making. Harvard Business 
Review, 42(4), 126–138.

https://www.forbes.com/sites/forbesbusinesscouncil/2022/05/12/what-is-the-role-of-ai-and-ml-in-data-management/
https://www.forbes.com/sites/forbesbusinesscouncil/2022/05/12/what-is-the-role-of-ai-and-ml-in-data-management/


50 E. STEYN ET AL.

Martin, J., Runge, M. C., Nichols, J. D., Lubow, B. C., & Kendall, W. L. (2009). 
Structured decision making as a conceptual framework to identify thresholds 
for conservation and management. Ecological Applications, 19(5), 1079–1090. 

Meana-Llorián, D., González García, C., Pelayo G-Bustelo, B. C., Cueva Lovelle, 
J. M., & Garcia-Fernandez, N. (2017). IoFClime: The fuzzy logic and 
the internet of things to control indoor temperature regarding the outdoor 
ambient conditions. Future Generation Computer Systems, 76, 275–284. 

Mehralian, G., Zarenezhad, F., & Ghatari, A. R. (2015). Developing a model 
for an agile supply chain in pharmaceutical industry. International Journal of 
Pharmaceutical and Healthcare Marketing, 9(1), 74–91. 

Moreno-Brieva, F., & Merino-Moreno, C. (2021). Technology generation of 
lithium batteries in leading countries. Environmental Science & Pollution 
Research, 28(22), 28367–28380. 

Murphy, J. (2022). 4 types of information technology cultures explained. https:// 
www.techtarget.com/searchcio/tip/4-types-of-information-technology-cul 
tures-explained. Date of access: 21 September 2022. 

Oosthuizen, R., & Pretorius, L. (2016). Assessing the impact of new tech-
nology on complex sociotechnical systems. South African Journal of Industrial 
Engineering, 27 (2), 15–29. 

Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., 
Ventayen, R. J. M., & Naved, M. (2021). Applications of artificial intelli-
gence in business management, e-commerce and finance. Materials Today: 
Proceedings, 80, 2610–2613. 

Pannu, A. (2015). Artificial intelligence and its application in different areas. 
Artificial Intelligence, 4(10), 79–84. 

Pasmore, W., Winby, S., Mohrman, S. A., & Vanasse, R. (2019). Reflections: 
Sociotechnical systems design and organization change. Journal of Change 
Management, 19(2), 67–85. 

Phillips-Wren, G. (2012). AI tools in decision making support systems: A review. 
International Journal on Artificial Intelligence Tools, 21(02), 1240005. 

Pollack, J., Costello, K., & Sankaran, S. (2013). Applying actor–network theory 
as a sensemaking framework for complex organisational change programs. 
International Journal of Project Management, 31(8), 1118–1128. 

Pomerol, J. C., & Adam, F. (2004). Practical decision making—From the 
legacy of Herbert Simon to decision support systems. Actes de la Conférence 
Internationale IFIP TC8/WG8 (pp. 647–657). https://www.researchgate. 
net/publication/228887070_Practical_Decision_Making-From_the_Legacy_ 
of_Herbert_Simon_to_Decision_Support_Systems. Date of access: 10 April 
2025. 

Porter, M. E. (2001). The value chain and competitive advantage. Understanding 
Business Processes, 2, 50–66.

https://www.techtarget.com/searchcio/tip/4-types-of-information-technology-cultures-explained
https://www.techtarget.com/searchcio/tip/4-types-of-information-technology-cultures-explained
https://www.techtarget.com/searchcio/tip/4-types-of-information-technology-cultures-explained
https://www.researchgate.net/publication/228887070_Practical_Decision_Making-From_the_Legacy_of_Herbert_Simon_to_Decision_Support_Systems
https://www.researchgate.net/publication/228887070_Practical_Decision_Making-From_the_Legacy_of_Herbert_Simon_to_Decision_Support_Systems
https://www.researchgate.net/publication/228887070_Practical_Decision_Making-From_the_Legacy_of_Herbert_Simon_to_Decision_Support_Systems


3 THEORETICAL FOUNDATION 51

Porter, M. E. (2008). Competitive advantage: Creating and sustaining superior 
performance. Free Press. 

Rejeb, A., & Keogh, J. G. (2021). 5g networks in the value chain. Wireless 
Personal Communications, 117 (2), 1577–1599. 

Saaty, T. L. (1978). Modeling unstructured decision problems—The theory of 
analytical hierarchies. Mathematics and Computers in Simulation, 20(3), 147– 
158. 

Sarker, I. H. (2022). AI-based modeling: Techniques, applications and research 
issues towards automation, intelligent and smart systems. SN Computer 
Science, 3(2), 158. 

Sekgweleo, T., Iyamu, T., & Makovhololo, P. (2017). The connectedness in 
selecting socio-technical theory to underpin information systems studies. 
Journal of Contemporary Management, 14(1), 1097–1117. 

Shrestha, Y. R., Ben-Menahem, S. M., & Von Krogh, G. (2019). Organizational 
decision-making structures in the age of artificial intelligence. California 
Management Review, 61(4), 66–83. 

Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors 
influencing artificial intelligence-based intelligent products. Telematics and 
Informatics, 47 , 101324. 

Song, Y.-Y., & Ying, L. (2015). Decision tree methods: Applications for 
classification and prediction. Shanghai Archives of Psychiatry, 27 (2), 130. 

Tiwari, R., Srivastava, S., & Gera, R. (2020). Investigation of artificial intelligence 
techniques in finance and marketing. Procedia Computer Science, 173, 149– 
157. 

Wafa’H, A., Mahfouf, M., & Salman, A. D. (2021). When swarm meets fuzzy 
logic: Batch optimisation for the production of pharmaceuticals. Powder 
Technology, 379, 174–183. 

Walsham, G., & Sahay, S. (1999). GIS for district-level administration in India: 
Problems and opportunities. MIS Quarterly, 1, 39–65. 

Whitworth, B. (2009). A brief introduction to sociotechnical systems. In Ency-
clopedia of information science and technology (2nd ed., pp. 394–400). IGI 
Global. 

Yuan, F.-C. (2009). The use of a fuzzy logic-based system in cost-volume-profit 
analysis under uncertainty. Expert Systems with Applications, 36(2, Part 1), 
1155–1163. 

Zamora, E. A. (2016). Value chain analysis: A brief review. Asian Journal of 
Innovation and Policy, 5(2), 116–128. 

Zawawi, N. H. M. (2018). Actor-network theory and inter-organizational 
management control. International Journal of Business & Society, 19, 219– 
234.



CHAPTER 4  

Diagnostics: Business Problem 

Abstract This chapter presents the first diagnostic iteration per the elab-
orated action design research (eADR) approach and aims to identify and 
refine key performance indicators (KPIs). The first cycle involved discus-
sions with mid-level managers to identify relevant KPIs across primary and 
support functions, classifying them into leading and lagging metrics. The 
second cycle refined and validated these metrics through validation with 
senior management, ensuring strategic alignment and relevance. A struc-
tured decision tree framework was developed to map the performance 
metrics to organizational decision variables, incorporating a thematic anal-
ysis approach. The findings underscore the need for a dynamic artificial 
intelligence (AI) decision-support model that considers both internal and 
external performance drivers. The final output, the _DecisionArtifact, 
consolidates these elements into a strategic framework and advances actor-
network theory (ANT) interessement progression by identifying key actor 
roles and their influence in shaping the AI decision-support model. 
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4.1 Introduction 

The previous chapter contextualized actor-network theory (ANT) as 
underlying the development of the anticipated artificial intelligence (AI) 
decision-support model. This chapter covers the first of the three bespoke 
diagnostic iterations. This iteration consists of two cycles; the first identi-
fies and considers the current key performance indicators (KPIs) through 
group discussions with mid-level managers, and the second refines the 
developed knowledge in collaboration with senior-level managers. Both 
cycles will follow the essential elaborated action design research (eADR) 
roadmap, which considers the problem, the build, and the evaluation 
of the in-process artifact building block, concluding with reflection and 
learning aspects. 

4.2 Performance Metric 
Classification: First Cycle 

4.2.1 Problem Formulation 

According to action design research (ADR)’s first and second principles, 
artifact design must be based on practice-inspired realities and theory-
ingrained research, drawing from real-world issues and science-based 
literature. With this in mind, considering the KPIs is necessary to under-
stand the relevant metrics in the contexts of an organization’s primary and 
support activities. Irfani et al. (2019) define the concept of performance 
metrics as metrics that quantify the effectiveness and efficiency of organi-
zational actions. The following sections introduce illustrative performance 
metrics as a foundational framework for organizational performance 
analysis and decision support. 

4.2.1.1 Primary Activities 
The primary activities per Porter’s value chain, refined for purposes of this 
book (refer to Fig. 3.3 as an illustrative guide) are considered as follows:

• Logistics activities ensure the movement of goods from origin to 
destination (Irfani et al., 2019) and help optimize inbound and 
outbound logistics in the value chain. Andersen and Fagerhaug 
(2003) emphasize the use of both quantitative and qualitative 
metrics to manage and enhance logistics functions, while Fawcett
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and Cooper (1998) identify both financial and non-financial 
metrics. Examples of this may include logistics costs, inventory 
management, productivity, inventory levels, and shipping accuracy.

• Manufacturing activities include operations, defined by Porter 
(2001) as transforming inputs into final products. These activ-
ities encompass inbound logistics and manufacturing within the 
value chain, aiming to link manufacturing to outbound sales and 
marketing activities. Ahmad and Dhafr (2002) emphasize the need 
for a balanced mix of financial and non-financial metrics, including 
profitability, product quality, manufacturing flexibility, production 
speed, and customer satisfaction.

• Sales, marketing, and after-sales-support services encompass critical 
indicators of the organization’s ability to generate revenue (Liu 
et al., 2015), emphasizing the need for integrated metrics. Such 
metrics could include financial indicators, with a focus on customer 
relationships, as well as non-financial metrics that hold sales teams 
accountable (Zallocco et al., 2009). These metrics also encompass 
sales volume, profitability, brand awareness, customer base growth, 
and customer retention (Clark, 2001). 

4.2.1.2 Support Activities 
In supplementing the primary activities, the support activities may include 
the following:

• (Soft) Firm infrastructure provides a vital support activity that 
services the entire value chain. Although organizational infrastruc-
ture may vary from case to case, input from stakeholders should be 
obtained to define the most appropriate metrics in context. These 
may typically be finance metrics (Mihăiloaie, 2019) and regulatory 
metrics (Giordano, 2022).

• Human resource (HR) management adds value by managing human 
capital to achieve a return on employee investment (Gabčanová, 
2012). It must continuously monitor its targets through both 
financial metrics, such as labor costs per employee and return on 
investment (ROI) on training, and non-financial metrics, including 
employee relations, skill development, and recruitment (Gabčanová, 
2012).
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• Technology development provides support by leveraging tech-
nology. Arden et al. (2021) highlight that Industry 4.0 tech-
nologies, including digitization, autonomous systems, robotics, and 
computing, can transform organizational performance; however, 
adoption requires overcoming challenges related to data and 
automation. 

4.2.2 Action Planning 

The current cycle aims to identify and evaluate organization-specific 
performance metrics, as elucidated below. 

4.2.2.1 Performance Metric Identification and Evaluation 
The previous section considered basic metric categories across different 
potential value chain activities. However, as noted above, identifying the 
metrics would require input from knowledgeable stakeholders. Hence, a 
pragmatic framework is needed to identify relevant organizational activity 
metrics. Table 4.1 presents the proposed approach used in this book. 

The illustrated framework aims to classify and analyze metrics based 
on the pertinent value drivers of each function, which are then differ-
entiated by internal or external comparison against industry standards 
or benchmarks. Subsequently, the analysis considers the leading metrics, 
which focus on future performance, while lagging metrics measure past 
results. Finally, the lagging metrics are classified as qualitative, providing 
categorical information, and quantitative, offering numerical information. 
Figure 4.1 illustrates a roadmap for using this framework in the metric 
identification and evaluation.

As illustrated, the process begins by identifying value-adding activities 
within a function, upon which (1) the leading metrics are based, acting as

Table 4.1 Performance metric identification framework 

Value driver Focus Leading metric Lagging metric 

Qualitative Quantitative 

Internal 
External 

Adapted from Gabčanová (2012) 
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Fig. 4.1 Performance metric framework breakdown

categories for similar metrics, and (2) the lagging metrics are classified as 
either quantitative or qualitative. The latter’s focus determines whether it 
is compared to internal standards or external benchmarks. Finally, factors 
that could potentially influence the actual performance must be consid-
ered. The accurate identification of these considerations enhances the 
development of decision trees. 

4.2.2.2 Decision Tree Development 
Corner and Corner (1995) proposed a three-dimensional analysis of deci-
sions based on the problem structure, uncertainty in outcomes, and the 
decision-maker’s preferences, laying a foundation for the decision tree 
concept. More recently, Kaul et al. (2022) highlighted the decision tree 
concept’s applicability in the contemporary digital era. 

Incorporating performance metrics into a decision tree involves 
charting each metric as a leaf node, representing the final decision point. 
The relevant metric’s numeric or categorical outputs become internal 
nodes, branching into the root nodes and encompassing all internal node 
considerations. In context, it is therefore crucial to weigh each root 
and internal node, reflecting their significance (Song & Ying, 2015), as 
illustrated in Fig. 4.2.
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Fig. 4.2 Conceptual decision-making process 

According to the illustration, the root nodes are considered individual 
factors that impact the overall performance; each is assigned a weighted 
rating (out of 100) and a base rating (out of 5.0). The various root nodes, 
in turn, contribute to the internal node, which is assigned to a base point 
and a weight rating, both of which can impact the leaf node and, conse-
quently, affect the calculation of the metric. With a base rating of 100 
points, any decision affecting such a rating must be assessed for acceptable 
variations to decide whether it should be implemented. 

4.2.2.3 Data Collection 
Specific details on applicable performance metrics and supporting consid-
erations should be developed in collaboration with relevant experts, 
typically through discussions or workshops. The group discussions for the 
diagnostic iterations were planned per the guidelines of Nyumba et al. 
(2018), which entailed defining the research design, objectives, and data 
collection methods. A structured questionnaire guides the latter. After the 
data collection, thematic analysis will be applied to interpret and extract 
insights. 

Group discussions using the said questionnaire involved up to four 
mid-level management participants per operational function across 11
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organizational tasks. The participants identified value drivers for their 
respective functions, which represent their primary areas of responsibility. 
Relevant metrics were linked to these drivers and classified as lagging indi-
cators, with further discussion determining their focus (i.e., internal or 
external) and measurement standards. The metrics were then categorized 
as qualitative or quantitative and grouped under broader headings for 
manageability. 

4.2.3 Artifact Creation 

Mullarkey and Hevner (2019) note that various artifacts can be created 
during the eADR cycles, depending on the iteration. For this book, the 
envisaged AI decision-support model requires data on industry decision-
making processes and supportive considerations. As one of its building 
blocks, the applied framework, as outlined in Table 4.1, guides the 
identification and evaluation of relevant metrics and their underlying 
considerations. 

The following sections outline the value drivers, leading, and lagging 
metrics in the context of primary and support value chain activities, as 
illustrated in Fig. 3.3. 

4.2.3.1 Primary Activities 
The following sections outline potential, illustrative primary activities, 
detailing the value drivers, leading and lagging performance metrics, and 
considerations that affect these metrics. Afterward, the thematic groups 
related to the leading metrics groups will be presented. 

i. Logistics (Inbound and Outbound) 

Table 4.2 illustrates the value drivers’ leading and lagging metrics and 
their foci in the inbound and outbound logistics context.

Table 4.3 further clarifies the information in Table 4.2 by examining 
the thematic factors that influence the contextual metrics, detailing the 
value drivers and key metric groups.

ii. Operations and Manufacturing
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Table 4.2 Logistics: value driver analysis 

Value driver Focus Leading metrics Lagging metrics 

Qualitative Quantitative 

Logistics 
integrity 

External Compliance Logistics 
compliance 
standards 

– 

Inbound logistics maintains the integrity of raw materials, while outbound 
logistics ensures the integrity of the supply chain from the supplier to the end 
user. Logistics integrity value driver measures compliance with potential industry 
standards, typically using metrics to assess qualitative adherence 
Supplier 
management 

Internal Relationship 
management 

Supplier service level agreement 
(SLA) matrix compliance 

Cost 
management 

– Cost comparison 
to budget 

The supplier management value driver measures logistics suppliers’ compliance 
with internal SLAs and industry standards, ensuring adherence to pricing, 
capabilities, communication, deliverables, and accreditations. Internally, logistics 
fees are compared to budgets to assess the value received

Table 4.3 Logistics: thematic considerations 

Value driver Leading metric group Thematic considerations 

Logistics integrity Compliance Compliance/external compliance 
Changes or deviations from industry standards could impact compliance with 
legislation and industry regulations, affecting the compliance metrics of the logistics 
integrity value driver 
Supplier management Relationship management Suppliers/internal standards 

Cost management Supplier/cost management 
Logistics/logistic management 

Supplier management involves establishing an internal SLA between the company 
and its logistics suppliers, and various factors influence compliance

Table 4.4 illustrates the value drivers’ leading and lagging metrics and 
their foci in the context of the operational activities.

Table 4.5 further clarifies the information in Table 4.4 by examining 
the thematic factors that influence the contextual metrics, detailing the 
value drivers and key metric groups.

iii. Sales and Marketing
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Table 4.4 Operations and manufacturing: value driver analysis 

Value driver Focus Leading metrics Lagging metrics 

Qualitative Quantitative 

Staff 
management 

Internal Production 
targets 

– Individual 
production 
targets 

External Compliance Professional qualification 
and CPD* compliance 

– 

Regarding staff management, qualifications, and ongoing professional 
development are tracked as qualitative metrics to ensure compliance. In 
production, staff or teams must meet output targets, measured as quantitative 
metrics against internal standards, and adaptable for automated environments 
Facility 
management 

External Housekeeping Environment management – 
Asset 
management 

Equipment management – 

The facility management value driver ensures manufacturing facilities meet 
external standards for product safety. Performance metrics under housekeeping 
and asset management assess qualitative compliance, comparing facilities and 
assets against external requirements 
Production Internal Production – Production 

targets 
Planning – Planning 

delivery 
accuracy 

Internal/ 
external 

Service levels Product quality levels 

The production value driver measures actual manufacturing performance, 
including production targets and demand plan accuracy, expressed as 
compliance percentages against internal standards. Product quality must meet 
external legislative standards, and the final metrics assess compliance through 
both quantitative and qualitative measures 
Stock 
management 

Internal Stock level 
management 

– Obsolete 
stock levels 

The stock management value driver ensures effective stock control by 
continuously monitoring levels to prevent obsolescence. Stock performance is 
measured as the percentage of obsolete stock relative to total stock and 
compared against internal standards 

*Continuous professional development

Table 4.6 illustrates the value drivers’ leading and lagging metrics and 
their focus, specifically within the context of key sales and marketing 
activities.
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Table 4.5 Operations and manufacturing: thematic considerations 

Value driver Leading metric group Thematic considerations 

Staff management Compliance HR/external standards 
Production targets HR/availability 

HR/internal skills available 
Business environment/internal 
environment 

Effective staff management depends on factors that impact compliance and target 
achievement, including employee skills, educational levels, and changes in the 
business environment that influence production output 
Facility management Housekeeping Compliance/external 

compliance 
Asset management Compliance/external 

compliance 
The facility management value driver ensures compliance with industry standards, 
with metrics influenced by external regulatory changes and updates to facility 
hardware 
Production Production HR/availability 

HR/internal standards 
Stock management/availability 
Compliance/external 
compliance 

Planning Production/planning 
Business environment/ 
external trends 

Service levels Compliance/external 
standards 

The production process must comply with regulations and standards. Metrics 
influenced by HR availability, stock levels, and external trends impact production 
needs and planning accuracy 
Stock management Stock level management Business environment/ 

external trends 
Stock management/external 
trends 

The stock management value driver ensures stock does not become obsolete by 
considering external market changes and internal production capacities that impact 
stock demand and availability

Table 4.7 further clarifies the information in Table 4.6 by examining 
the thematic factors that influence the contextual metrics and detailing 
the value drivers and leading metric groups.

iv. After-Sales Service
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Table 4.6 Sales and marketing: value driver analysis 

Value driver Focus Leading metrics Lagging metrics 

Qualitative Quantitative 

Customer 
relationship 

Internal Relationship 
management 

Performance 
review 

– 

Relationship 
creation 

– Number of 
new 
customer 
visits 

Internal/ 
external 

Product 
placement 

– Store 
coverage of 
products 

The customer relationship value driver focuses on building and maintaining 
client relationships. Organizations assess compliance qualitatively using a 
performance review matrix. Sales teams are evaluated based on new customer 
outreach and product range coverage in stores, with metrics tracking the 
percentage of stocked products to ensure proper distribution 
Departmental 
support 

Internal Stock availability – Stock 
planning 
(Infill 
report) 

The sales function supports stock management by ensuring requested stock 
aligns with actual sales, with performance metrics measuring accuracy against 
internal standards 
Sales Internal Margin 

management 
– Various 

channel 
margin 
ratios 

External sales – Sales to the 
customer vs 
Budget 
achieved 

– Sales go out 
to the 
consumer 

The sales value driver ensures organizational profitability by managing sales and 
profitability ratios across channels. Performance metrics track financial ratios 
against internal standards and budgets. For wholesale sales, a metric monitors 
stock movement to final consumers 
Operational 
support 

Internal Staff 
management 

– Individual 
staff sales 
targets

(continued)
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Table 4.6 (continued)

Value driver Focus Leading metrics Lagging metrics

Qualitative Quantitative

– Company 
policy 
compliance 

– Commission 
management 

Staff training Margin 
management 
training 

The operational support value driver ensures effective sales and HR management 
through the tracking of key metrics, including individual sales targets, policy 
compliance, and commission alignment with budgets. Staff training is also 
evaluated qualitatively to ensure the maintenance of required skills 
External brand 
awareness 

Internal Training – Number of 
training 
sessions 

– Number of 
trainees 

Once-off support – New 
product 
sales 
support 

– Obsolete 
stock 
movement 
targets 

Internal/ 
external 

Sales Support – Specific sales 
targets 

For external brand awareness support, the education function tracks training 
sessions for external staff to enhance sales effectiveness and ensure compliance 
with capacity targets and internal standards. Performance metrics also measure 
the sales performance of new or campaign-driven products and provide ad hoc 
support to address market changes, preventing stock obsolescence by converting 
it into sales 
Digital footprint Internal/ 

external 
Digital platforms – Product/ 

brand 
awareness 

– Customer 
conversions

(continued)
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Table 4.6 (continued)

Value driver Focus Leading metrics Lagging metrics

Qualitative Quantitative

The marketing function measures the quantity and quality of interactions with 
new products or brands under the brand awareness value driver. The goal is to 
ensure that sentiment initiatives reach a target audience, with performance 
metrics used to quantify their potential reach and compare it to internal 
standards 
Commercial 
measures 

Internal Innovation – Cost of 
goods sold 
(COGS) 
Support 

Renovation Marketing investment levels 
The final value driver, commercial measures, enhances product profitability by 
optimizing commercial factors. Performance metrics include COGS savings 
compared to internal targets and financial investment assessed quantitatively 
against budgets and qualitatively against external benchmarks

Table 4.8 illustrates the value drivers’ leading and lagging metrics and 
their foci in the context of after-sales service activities.

Table 4.9 further clarifies the information in Table 4.8 by examining 
the thematic factors that influence the contextual metrics, outlining the 
value drivers, key metric headings, and relevant considerations.

4.2.3.2 Support Activities 
i. Finance 

Table 4.10 illustrates the value drivers’ leading and lagging metrics and 
their foci in the context of the finance support infrastructure activities.

Table 4.11 further clarifies the information in Table 4.10 by examining 
the thematic factors that influence the contextual metrics and detailing the 
value drivers and leading metric groups.

ii. Regulatory 

Table 4.12 illustrates the value drivers’ leading and lagging metrics and 
their foci in the context of the regulatory support infrastructure activities.
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Table 4.7 Sales and marketing: thematic considerations 

Value driver Leading metric group Thematic considerations 

Customer relationship Relationship management Customer/relationship 
Business environment/ 
competitor analysis 
Stock management/ 
availability 
Marketing/investment 
Business environment/ 
business reputation 
Business environment/ 
external trends 

Product placement 

Key considerations for the customer relationship value driver include relationship 
history, internal and external factors, competitor actions, financial resources, 
product availability, market trends, and company reputation, all of which influence 
customer interactions and sales potential 
Departmental support Stock availability Stock management/ 

availability 
Production/capacity 
Financial/cash 
resources 
Business environment/ 
external trends 

Departmental support considerations include supply planning accuracy, raw material 
availability, production capacity, and cash resources, all of which impact stock 
planning and the supply chain 
Sales Margin management Sales/product mix 

Sales/pricing 
Customer/relationship 
Marketing/investment 
Business Environment/ 
business reputation 

External sales 

The sales value driver considers factors impacting sales margins, including product 
mix, market and competitor trends, and company reputation, which influence 
pricing and profitability 
Operational support Staff management Stock management/ 

availability 
Stock management/ 
product mix 
Customer/relationship 
HR/internal standards

(continued)
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Table 4.7 (continued)

Value driver Leading metric group Thematic considerations

For effective stock planning under operational support, sales must consider current 
stock levels, customer relationships, and adequate HR resources to optimize 
product mix and planning 

Staff training HR/availability 
HR/internal standards 

The sales function’s final value driver is staff management. The function ensures 
target achievement and policy compliance by considering staff availability for 
practical training 
External brand awareness 
support 

Training Business environment/ 
competitor analysis 
Business environment/ 
market Trends 
HR/availability 
HR/internal skills 
available 

Sales support Business environment/ 
competitor analysis 
Stock management/ 
availability 
Business environment/ 
business reputation 
Business environment/ 
time constraints 

Once-off support 

External brand awareness training is influenced by competitor strategies, internal 
skill shortages, staff availability, and market trends, all of which impact the content 
and delivery of training. For product sales and stock management support, business 
environment changes impacting product demand also affect performance metrics 
Digital footprint Digital platforms Marketing/internal 

standards 
Customer/pricing 

Digital brand-building performance metrics rely on customer technical skills, factors 
that address customer needs, and influences on purchasing decisions 
Commercial measures Innovation Production/availability 

Business environment/ 
external trends 

Renovation Business environment/ 
external trends 
Financial/cash 
resources 

The commercial measures value driver is influenced by manufacturing costs, 
marketing’s role in price reduction, financial resources, and market trends affecting 
product viability
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Table 4.8 After-sales service: value driver analysis 

Value driver Focus Leading metrics Lagging metrics 

Qualitative Quantitative 

Pre-sales service Internal Customer 
satisfaction 

Customer satisfaction index 

External Legality Legality of 
sales 

The service department focuses on pre- and after-sales activities to ensure 
customer satisfaction. Pre-sales performance metrics assess compliance with 
industry regulations before a sale, while post-sales performance metrics evaluate 
customer satisfaction against internal standards during the ordering process 
After-sales service Internal Delivery 

management 
– On-time delivery 

Customer 
satisfaction 

Customer satisfaction index 

External Delivery 
management 

Delivery 
compliance 

– 

After-sales services focus on customer satisfaction with the product and delivery 
compliance. Satisfaction is measured against internal standards, while delivery 
time is assessed against customer agreements

Table 4.9 After-sales service: thematic considerations 

Value driver Leading metric group Theme considerations 

Pre-sales service Legality Compliance/external compliance 
Customer satisfaction Customer/preferences 

Pre-sales services must comply with legal standards, requiring businesses to stay 
updated on regulatory changes. Customer satisfaction in ordering depends on 
various factors that companies must identify and understand 
After-sales service Process management Compliance/external compliance 

Delivery management Logistics/logistic management 
Natural events/natural events 
Government/policies 

Customer satisfaction Customer/satisfaction 
After-sales services, like pre-sales, require regulatory compliance. Delivery 
performance metrics considerations include delivery type, destination, and 
unforeseen delays that affect timing
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Table 4.10 Finance: value driver analysis 

Value driver Focus Leading metrics Lagging metrics 

Qualitative Quantitative 

Financial 
reporting 

Internal Reporting quality – Reporting 
quality 

Timely reporting – Timely 
reporting 

External Compliance Audit 
requirements 

– 

Compliance Listing 
requirements 

– 

Compliance Tax 
compliance 

– 

The financial reporting value driver focuses on meeting external financial 
requirements. Leading metrics emphasize the importance of reporting quality 
and timeliness to ensure high standards and punctuality. Qualitative metrics 
measure compliance by assessing adherence to audit, listing, and tax 
requirements 
Commercial 
finance 

Internal Commercial support – Reporting 
quality 

Commercial support – Timely 
reporting 

Internal/ 
external 

Decision support – Various 
financial 
measures 

Commercial finance supports the organization through timely, high-quality 
reporting to other functions. Key performance metrics in this context ensure 
proper reporting and include various business measures to guide 
decision-making, such as: 
• Statement of Profit or Loss (SoPL): – Sales vs. budget percentage 

– Gross profit margins 
– Fixed and payroll expenses 
– Rebates as a percentage of sales 
– Profit before and after tax 

• Statement of Financial Position 
(SoFP): 

– New working capital targets 
– Capital expenditure versus budget 
– Return on invested capital ratio 

Staff 
management 

Internal Staff measures – Staff 
productivity 
and service 
levels 

Finance must effectively manage its HR resources to support other functions. 
The staff management value driver measures productivity to ensure timely 
report completion and compliance with internal standards

(continued)
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Table 4.10 (continued)

Value driver Focus Leading metrics Lagging metrics

Qualitative Quantitative

Supplier 
management 

Internal Relationship management – The volume 
of supplier 
complaints 

In supplier management, the finance function oversees the processing of the 
accounting system, ensuring that inputs comply with internal standards 
measured by a quantitative metric. Supporting supplier relationships involves 
accurately reporting supplier documents, with quantitative metrics that track 
errors that may impact these relationships

Table 4.13 further clarifies the information in Table 4.12 by examining 
the thematic factors that influence the contextual metrics and detailing the 
value drivers and leading metric groups.

iii. HR Management 

Table 4.14 illustrates the value drivers’ leading and lagging metrics and 
their foci in the context of the HR support activities.

Table 4.15 further clarifies the information in Table 4.14 by examining 
the thematic factors that influence the contextual metrics, detailing the 
value drivers and key metric groups.

iv. Technology Development 

Table 4.16 illustrates the value drivers’ leading and lagging metrics and 
their foci in the technology development infrastructure activities context.

Table 4.17 further clarifies the information in Table 4.16 by examining 
the thematic factors that influence the contextual metrics and detailing the 
value drivers and leading metric groups.

v. Procurement
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Table 4.11 Finance: thematic considerations 

Value driver Leading metric group Thematic considerations 

Financial reporting Reporting quality/timely 
reporting 

HR/internal skills available 
Hardware/availability 
HR/availability 

Compliance Compliance/external 
compliance 
HR/availability 

Financial reporting prioritizes report quality and timely delivery. Key considerations 
include HR skills for managing internal reporting, availability of HR resources, and 
access to necessary information technology (IT) hardware 
Commercial finance Commercial support Business environment/ 

internal processes 
Business environment/data 
accuracy 
HR/availability 

Decision support Business environment/ 
financial indicators 
HR/internal skill availability 

The commercial finance value driver is influenced by internal processes, such as 
interdepartmental communication, which impact the ability to deliver quality 
outputs. External factors include data accuracy, the ability to interpret data, and 
staff availability for producing accurate, timely reports 
Supporting other functions involves adjusting financial indicators, such as sales 
levels, rebate management, COGS, fixed costs, and balances for debtors, creditors, 
and inventory 
Staff management Staff measures HR/internal skill availability 

Hardware/availability 
The staff management value driver considers factors affecting productivity, including 
employee skills, available time, and access to necessary hardware for task accuracy 
Supplier management Relationship management HR/internal skill availability 

Supplier/internal processes 
Supplier management focuses on internal standards for processing supplier 
documents in accounting software. Considerations include factors impacting capture 
quality, which could lead to supplier dissatisfaction or the need to rework 
documentation

Table 4.18 illustrates the value drivers’ leading and lagging metrics and 
their foci in the context of the procurement activities.

Table 4.19 further clarifies the information in Table 4.18 by examining 
the thematic factors that influence the contextual metrics, and detailing 
the value drivers and leading metric groups.
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Table 4.12 Regulatory: value driver analysis 

Value driver Focus Leading 
metrics 

Lagging metrics 

Qualitative Quantitative 

Product quality Internal Customer 
feedback 

– Number of 
recalls 

Customer 
feedback 

– Number of 
complaints 

External Process 
management 

Severity of adverse effect 
(Process impact) 

The regulatory function ensures compliance with government legislation and 
governing bodies. Key value drivers include product quality, safety, 
effectiveness, registration, development, and improvement. The product quality 
driver focuses on customer feedback, measured by the number of complaints 
or product recalls, compared against company standards. In cases of adverse 
customer effects, the metrics assess the manufacturing process’s contribution, 
using quantitative and qualitative measures to identify its impact on negative 
feedback 
Product safety External Process 

management 
The severity of adverse 
effect (Formulation) 

The product safety value driver addresses negative impacts resulting from 
product formulation, focusing on metrics that ensure compliance with external 
standards for formulation. In contrast, the product quality driver focuses on 
manufacturing-related adverse effects 
Product effectiveness Internal Financial 

indicators 
Sales levels – 

External Research 
quality 

Academic 
research 

– 

Two leading performance metrics measure product effectiveness. The first 
comparison quantitatively evaluates sales against competitors, attributing higher 
sales to the product’s efficacy. The second ensures the formulation remains 
current by comparing it to the latest external academic studies 
Product registration External Compliance Product 

registration 
compliance 

– 

The product registration value driver ensures all products comply with 
legislative requirements and are registered with relevant regulatory bodies for 
consumer safety. The performance metric qualitatively assesses adherence to 
local registration standards 
Product development Internal Trend 

reactions 
Turnaround 
time 

– 

External Competitor 
analysis 

Competitor 
analysis 

–

(continued)
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Table 4.12 (continued)

Value driver Focus Leading
metrics

Lagging metrics

Qualitative Quantitative

In dynamic market environments, organizations must quickly adapt to market 
trends. The product development value driver tracks competitive changes 
qualitatively and quantitatively measures the time from development to market 
Product improvement Internal Customer 

feedback 
– Change in the 

number of 
complaints 

Financial 
management 

– Product 
margin 
improvement 

The product improvement value driver focuses on maintaining competitiveness 
by quantifying potential financial margin improvements and measuring them 
against actual economic changes. It also tracks the effectiveness of margin and 
product improvements through a reduction in customer complaints

4.2.4 Evaluation 

Based on the literature, Table 4.1 enabled the exploration of diverse 
performance metrics and outcomes. Data collection expanded participant 
perspectives on such metrics within their functions. As shown in Fig. 4.2, 
root and internal nodes can be weighted to manage lagging metrics. 
When a metric changes, additional scoring can be applied to the leading 
metrics and overall value activities. 

Evaluating the artifact components against the earlier defined problem 
entailed identifying and analyzing literature-based performance metrics. 
However, being cognizant of the fifth ADR principle, confirming that 
evaluation is an ongoing process shaping design decisions (McCurdy 
et al., 2016: 3), feedback was continuously assessed after each interview to 
ensure well-rounded data. In line with the third ADR principle of recip-
rocal shaping, the dynamic evolution of the artifact and research process 
is shaped by industry experts and an industry-knowledgeable researcher 
to maintain relevance. These integrated aspects are presented in Fig. 4.3 
as an initial building block artifact on the path to the envisioned AI 
decision-support model.

Figure 4.3 integrates a decision tree with previously created compo-
nents. The themes serve as root nodes, influencing code groups (internal 
nodes), which in turn impact lagging metrics (leaf nodes). These
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Table 4.13 Regulatory: thematic considerations 

Value driver Leading metric group Thematic considerations 

Product quality Customer feedback Compliance/external 
compliance 
Business environment/external 
trends 

Process management 

Product recalls under product quality are influenced by compliance with external 
standards and changes in the business environment. Factors include alterations to 
product specifications, raw materials, or manufacturing standards, which can lead to 
customer complaints or product recalls due to failures 
Product safety Process management Compliance/external 

compliance 
Business environment/external 
trends 
Business environment/internal 
standards 

Ensuring product safety requires compliance with legislation and academic standards 
in the initial formulation. Changes in external compliance requirements, internal 
manufacturing standards, and evolving consumer trends that impact perceived safety 
standards influence performance metrics 
Product effectiveness Financial indicators Business environment/external 

trends 
Research quality Compliance/external 

compliance 
Product effectiveness is measured externally by sales levels and internally by the 
quality of research. Key considerations include factors that impact the product’s 
journey from manufacturing to shelves, as well as the organization’s capacity to 
research and apply the latest trends effectively 
Product registration Registration compliance Compliance/external 

compliance 
Changes in registration and compliance requirements set by authorities and 
governing bodies influence the product registration value driver 
Product development Trend reactions Business environment/internal 

processes 
Financial cash resources 
Human Resources/availability 

Competitor analysis Business environment/ 
competitor analysis 

When considering product development, key factors include external market trends, 
product type, and internal resources such as financial and HR availability, which can 
impact the performance metric 
Product improvement Customer feedback Human Resources/internal skill 

availability 
Financial/cash resources

(continued)
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Table 4.13 (continued)

Value driver Leading metric group Thematic considerations

Financial management Business environment/external 
trends 
Financial/cash resources 

The product improvement value driver focuses on enhancing current products 
through innovation, with the first metric addressing external customer feedback to 
reduce complaints by tracking issues and implementing corrective actions. 
Additional metrics could target profit margin improvements through formulation 
updates, manufacturing processes, or packaging changes, relying on internal skills 
and financial resources. External trends also impact metrics, as failure to adapt to 
market or customer changes can hinder competitiveness

contribute to a broader set of metrics affecting the leading metrics and, 
ultimately, functional value. 

4.2.5 Reflection and Learning 

Each eADR cycle’s reflection and learning may trigger another cycle 
within the iteration, potentially leading to advancement to the next itera-
tion or a move backward to refine problem understanding (Mullarkey & 
Hevner, 2019). These tables provide a foundation for an AI decision-
support model but lack strategic inputs and oversight. Therefore, in the 
context of this book, before proceeding to the following diagnostic itera-
tion (as outlined in Chapter 5), the validity of the value drivers presented 
in Tables 4.2–4.19 must be assessed. 

Data validation is necessary to ensure accuracy and completeness; 
therefore, another diagnostic cycle is required to refine and validate the 
collected data before proceeding. 

4.3 Performance Metric 
Classification: Second Cycle 

4.3.1 Problem Formulation 

Mullarkey and Hevner (2019: 4) emphasize that each eADR iteration’s 
problem formulation should stem from the learning and reflection of 
the previous. The _DecisionArtifact, as the final output of this iteration, 
must be verified to confirm that it meets design iteration requirements.
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Table 4.14 HR management: value driver activities 

Value driver Focus Leading metrics Lagging metrics 

Qualitative Quantitative 

Staff pipeline Internal Workforce 
planning 

– Critical roles 
filled 

– Leadership 
roles filled 

HR creates value by managing talent to achieve a return on employee 
investment. Key value drivers include staffing pipeline management and ensuring 
continuity in the staff organogram. Relevant metrics measure the percentage of 
critical and leadership roles filled and the availability of successors for these 
positions 
Enablement Internal Onboarding Role gap 

analysis 
– 

– Time to 
onboard 

The enablement value driver ensures staff can meet job-specific targets and 
integrate successfully into the organization. HR conducts a qualitative role gap 
analysis to confirm staff have the necessary resources and training. The 
onboarding process is quantitatively measured to ensure it aligns with internal 
standards, enabling efficiency without overusing organizational resources 
Staff retention Internal Staff management Staff 

development 
plans 

– 

External Employee benefits and value 
adds 

Internal/ 
external 

– Staff 
turnaround 

After onboarding, HR ensures staff retention and maintains talent standards. 
The key metric for staff retention is the annual staff turnover rate, measured 
against internal standards and industry norms. HR evaluates employee benefits 
to minimize turnover, comparing them to market trends and internal budgets 
Learning and 
development 

Internal Supplier 
management 

Supplier SLA matrix 
compliance 

Staff development 9-box grid 
analysis 

– 

Cost management – Learning and 
development 
cost 
management 

– Government 
grant ROI 
management

(continued)
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Table 4.14 (continued)

Value driver Focus Leading metrics Lagging metrics

Qualitative Quantitative

The learning and development value driver ensures staff skills remain relevant 
and aligned with industry standards. Training suppliers are evaluated using 
internal matrices to meet organizational standards. A grid  framework 
qualitatively identifies staff members who need development. Development costs 
are assessed and compared internally to ensure compliance with standards. 
External factors, such as government grants for staff development, also impact 
this driver 
Labor 
compliance 

External Transformation – Transformation 
targets 

Internal/ 
external 

Compliance – Legislation 
required 
reporting 
compliance 

The labor compliance value driver ensures HR practices meet legislative and 
reporting requirements, including government transformation targets, reporting 
quality, and timeliness. These requirements align with stock exchange listing 
requirements and sustainability reports in annual financial statements; any 
changes to these requirements could impact compliance

It encompasses a comprehensive set of performance metrics covering key 
organizational functions, supplemented by additional considerations. The 
artifact classifies metrics into leading and lagging categories, organizing 
considerations by theme and code, which supports its verification. While 
the decision framework identifies a range of concerns affecting these 
metrics, they are not exhaustive, as decision-making remains inherently 
dynamic and influenced by individual decision-makers. 

4.3.2 Action Planning 

The second cycle gathers additional industry feedback and validation on 
the performance metrics that support the objectives. Data collection and 
processing are discussed below. 

4.3.3 Artifact Creation 

Using the preceding tables as a guide, interviews will be conducted 
across 11 organizational functions, each involving one senior management
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Table 4.15 HR management: thematic considerations 

Value driver Leading metric group Thematic 
considerations 

Staff pipeline Workforce planning Business environment/ 
external HR standards 
Financial/budget 
constraints 
HR/internal processes 

Factors affecting HR value drivers include market conditions that impact the 
availability and required skills, financial resources that influence the ability to 
maintain a skilled pipeline, and internal process complexity and compliance in 
hiring the right staff 
Enablement Onboarding HR/job specification 

HR/availability 
Financial/budget 
constraints 
HR/internal processes 

During staff onboarding, key considerations include factors that impact the 
resources required for employees to perform effectively. Role complexity, availability 
of internal resources, and budget changes influence onboarding 
Staff Retention Staff management Business environment/ 

external trends 
Business environment/ 
external HR skills 

Staff retention considerations include internal financial constraints that limit 
retention resources and external factors, such as the availability of skilled 
replacements in the market 
Learning and development All leading performance 

metrics in the group 
Financial/cash 
resources 
HR Resources/ 
availability 
Government/grant 
management 

Factors affecting learning and development metrics include internal financial 
resources and the availability of staff time for training. Externally, government 
incentives and grants influence ROI calculations and funding utilization for staff 
development 
Labor compliance Transformation Compliance/external 

compliance 
Compliance/internal 
compliance 
Financial/cash 
resources

(continued)
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Table 4.15 (continued)

Value driver Leading metric group Thematic
considerations

Compliance Compliance/external 
compliance 

Changes in labor legislation or external reporting requirements directly impact the 
compliance metrics, affecting the company’s adherence to labor compliance factors

participant, to generate supportive knowledge and validate the current 
artifact. Each value driver required relevant performance metrics, catego-
rized as lagging metrics. Participants discussed whether the metrics had 
an internal or external focus and whether they were measured against 
organizational or industry standards. The metrics were also classified as 
qualitative or quantitative and grouped under leading performance metric 
categories for better organization. 

Once the performance metrics were confirmed, participants considered 
factors influencing them, following the thematic approach of the earlier 
iteration. After validating the data from the earlier iteration, industry 
participants provided additional insights, emphasizing a strategic perspec-
tive on the frameworks. Their input highlighted that decision frameworks 
align with the broader business strategy, as illustrated in Fig. 4.4.

Figure 4.4 shows that all nodes and value activities must align with the 
business strategy. Value drivers and performance metrics should support 
strategic objectives and remain relevant to the business environment. 
The findings emphasize that any AI-driven decision framework must be 
strategically designed to manage the relevant metrics effectively. 

4.3.4 Evaluation 

The final evaluation of the decision framework and data presented in 
Tables 4.2–4.19 informs the design of the _DecisionArtifact. Integrating 
business strategy further strengthens the artifact, enhancing support for 
the book’s final objectives. The verification and validation of the _ 
DecisionArtifact occurred in two steps: the design was confirmed to 
meet the specified requirements, and its ability to effectively address the 
defined business problem by identifying prevailing metrics in context was
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Table 4.16 Technology development: value driver analysis 

Value driver Focus Leading metrics Lagging metrics 

Qualitative Quantitative 

Infrastructure 
support 

Internal Service 
availability 

– Uptime 

Security – Applications 
levels 

External Security standards – 
Infrastructure support is measured through service availability and security. 
Service availability ensures IT systems are operational and quantified as the 
uptime percentage against internal standards. Security is assessed qualitatively by 
comparing company practices to external standards, such as international 
organizational standardization (ISO), and internal security benchmarks 
Operational 
management 

Internal Hardware 
management 

– Warranty claims 
Asset life cycle 
management 

– 

Software 
management 

User applications 
availability 

– 

Obsolete software 
review 

– 

Operational management metrics are measured against internal standards to 
ensure sufficient hardware and software for effective operations. It includes: 
• Hardware management: Measured by the number of warranty claims 

(quantitative) to assess brand reliability and asset lifecycle management 
(qualitative) to determine asset utilization before replacement 

• Software management: Assessed qualitatively against internal standards to 
ensure appropriate software availability for business functions while avoiding 
unnecessary use of obsolete software 

Staff support Internal Incident 
management 

– Ticket cycle 

Request 
management 

– Time to resolve a 
request 

The staff support value drivers focus on addressing technology-related queries 
and requests to maintain organizational productivity. Leading metrics, grouped 
under incident and request management, are measured quantitatively by the 
resolution time for requests or incidents 
Supplier 
management 

Internal Relationship 
management 

Vendor skill levels – 

– Supplier pricing

(continued)
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Table 4.16 (continued)

Value driver Focus Leading metrics Lagging metrics

Qualitative Quantitative

– Turnaround time 
The technology development function manages supplier relationships, measuring 
metrics against internal company standards. Qualitative metrics assess the skills 
and capabilities that suppliers should possess, while quantitative metrics include 
an internal matrix that evaluates factors such as pricing. A final metric measures 
average supplier turnaround times against internal standards to ensure timely 
service

ensured. Hence, the _DecisionArtifact has been validated based on three 
key elements:

• Relevance—Does the eADR iteration support achieving the primary 
objective?

• Design—Does the diagnosis iteration follow the correct approach?
• Effectiveness—Does the final artifact address the problem under 
scrutiny? 

The third ADR principle, reciprocal shaping, the fifth ADR principle, 
continuous evaluation, and the sixth ADR principle, guided emergence, 
balance the intentional intervention cycle with organic design evolu-
tion. The final artifact evolved through organizational and research 
perspectives, with internal shaping and external input from the researcher. 

The current iteration’s objective is to develop an AI framework 
that illustrates decision programmability. Data collection focused on 
industry-relevant performance metrics, with diagnostics cycles confirming 
the artifact’s relevance. The final _DecisionArtifact includes all required 
components for the AI decision-support model, validating its correctness. 

4.3.5 Reflection and Learning 

Following the first eADR diagnostic cycle, translation has moved from 
problematization to interessement. During this process, identified actors 
passed through the obligatory point, recognizing that the proposed
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Table 4.17 Technology development: thematic considerations 

Value driver Leading metric group Thematic considerations 

Infrastructure support Service availability Government/service 
Maintenance/planning 
Hardware/status 

Security Compliance/external 
standards 
Compliance/internal 
standards 

The infrastructure support value driver considers events that affect the availability of 
essential services, such as electricity or water, and maintenance cycles that impact 
service uptime. Hardware-related factors also influence the metrics based on various 
scenarios. For security, internal and external risks affect infrastructure integrity, 
requiring compliance with evolving ISO standards and internal processes to 
maintain security 
Operational management Hardware management Service standard/grouping 

Hardware/status 
Hardware/service history 
Hardware/standards 
Business environment/ 
internal standards 

Software management Software/status 
Software/pricing 

Operational management support is influenced by factors affecting the availability 
and functionality of hardware and software 
• Hardware considerations include incident severity, service history, and internal 

standards. The business environment and evolving technologies also impact the 
metrics 

• Software, factors such as pricing and status, are key considerations 
Staff support Incident and request 

management 
Service standards/grouping 
Business environment/ 
internal standards 
HR/availability 
Hardware availability 

Staff support is influenced by factors that impact resolution time, including HR and 
hardware availability. The severity of the request also affects resolution time. 
Additionally, changing business conditions and evolving technologies can impact 
staff support

(continued)
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Table 4.17 (continued)

Value driver Leading metric group Thematic considerations

Supplier management Relationship management Suppliers/capabilities 
Supplier/pricing 
Service standards/grouping 
Business environment/ 
internal standards 
Business environment/ 
external trends 

Supplier management involves interacting with suppliers in the technology 
development function. Key considerations include supplier capabilities, pricing, 
request urgency, and internal standards. Additionally, changes in the external 
environment can impact the supplier relationship

Table 4.18 Procurement: value driver analysis 

Value driver Focus Leading metrics Lagging metrics 

Qualitative Quantitative 

Strategic 
procurement 

Internal Demand supply – Demand 
planning 
delivery 
accuracy 

Supplier 
management 

– EBQ 
management 

External Compliance Quality 
compliance 

– 

Internal/ 
external 

Cost management – Price point 
management 

The procurement function focuses on acquiring strategic raw materials and 
goods, measured by two value drivers: strategic procurement and supplier 
management. Under strategic procurement, metrics include cost management, 
which measures purchase prices against market trends and internal budgets 
Economic batch quantities (EBQ) are managed to avoid excess stock or 
shortages. Successful procurement ensures that the correct amount and quality 
of materials are available for manufacturing, requiring adherence to quality 
standards and performance metrics to ensure accurate demand planning 
Supplier 
management 

Internal Compliance Supplier SLA matrix 
compliance 

All purchased items must come from approved suppliers to ensure compliance 
with industry standards and legislation. The supplier management value driver 
measures supplier compliance using an internal matrix, evaluating qualitative and 
quantitative standards against internal benchmarks
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Table 4.19 Procurement: thematic considerations 

Value driver Leading metric group Thematic considerations 

Strategic procurement Cost management Procurement/item classification 
Suppliers/pricing 
Logistics/logistics management 
Stock management/availability 
Stock management/external trends 
Stock management/complexity 
Natural events/natural events 
Government/policies 
Business environment/external trends 
Compliance/external compliance 

Supplier management 
Compliance 
Demand planning 

Supplier management Compliance 

The themes and codes illustrate how considerations integrate and impact various 
areas of the function. Factors such as the complexity of procured items, supplier 
pricing, and market trends can affect cost management metrics, supplier 
compliance, and demand planning. Supply chain or logistics changes can 
compromise item integrity, influencing supplier management and compliance. 
Availability issues, compounded by natural events, can affect pricing and supply

Fig. 4.3 Decision tree 
framework
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Fig. 4.4 _DecisionArtifact

solution supports both the network’s broader goal and their interests. 
Figure 4.5 illustrates the updated ANT network post-diagnosis iteration. 

Fig. 4.5 ANT interessement progression (first diagnostics)
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Figure 4.5 illustrates the translation from problematization to inter-
essement in developing the ANT network. During this phase, actors 
assumed specific roles within the network. 

The researcher, initially the focal actor, evolved into the network trans-
lator, facilitating communication between source actors and target actors. 
By engaging with the source actors, the researcher validated the viability 
of AI in decision-making. Once convinced, these actors influenced target 
actors, forming alliances that aligned individual interests with the broader 
goal of developing the envisaged AI decision-support model. 

Non-human actors, including AI, became isolated network actors, 
meaning they could act without direct negotiation connections. AI, for 
example, influences the network but does not interact directly with other 
actors. 

4.4 Summary 

This chapter identified key performance metrics and their considera-
tions using two eADR diagnostics cycles. The first cycle gathered metric 
data from mid-level managers, while the second cycle validated and 
refined the artifact in conjunction with senior-level managers. The final 
_DecisionArtifact outlines a decision-making framework incorporating 
industry-based metrics and their influencing factors. 

Chapter 5 will conduct the second diagnostics iteration, focusing on 
socio-technical thinking aspects in context. 
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CHAPTER 5  

Diagnostics: AI Culture 

Abstract This chapter presents the second of three diagnostic elaborated 
action design research (eADR) iterations, focusing on developing and 
validating a _SocialArtifact to support an artificial intelligence (AI) model 
in support of the envisaged decision-support model. By integrating the 
technology acceptance model (TAM) and value-based adoption model 
(VAM) into an enhanced action design research (eADR) process, the 
book addresses the challenges of AI adoption from a socio-technical 
theory perspective. Grounded in the design science’s principle of solving 
practical problems, it examines user attitudes through TAM’s perceived 
ease of use (PEoU) and usefulness (PU) and VAM’s focus on perceived 
benefits and sacrifices. Qualitative data gathered from group discussions 
and interviews with mid- to senior-level management using a structured 
questionnaire informed the thematic construction of the _SocialArtifact, 
which is a further building block in the development of the AI decision-
support model. Verification ensures the artifact accurately reflects the 
prevailing AI culture and supports the broader _DecisionArtifact. At 
the same time, validation confirms alignment with the primary objec-
tive of developing an AI framework that balances technical and social 
considerations. Finally, the chapter illustrates how actor-network theory 
(ANT)’s interessement stage progresses the evolution of the network, 
including interactions among actors and the influence of external actors 
on organizational change.
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5.1 Introduction 

The previous chapter introduced identifying and evaluating key perfor-
mance indicators (KPIs) in support of structured decision-making. This 
chapter builds upon the key concepts introduced earlier and aims to 
establish foundational concepts about acceptance models in the context 
of artificial intelligence (AI) culture, condensed into a _SocialArtifact. 
Like before, knowledge development involves mid-level and senior-level 
industry participants. The iteration also aligns with the tenets of the elab-
orated action design research (eADR) approach, as it contextualizes the 
problem under consideration, plans for the development of the antici-
pated _SocialArtifact, and then reflects on the specific outcomes. After 
this chapter’s diagnostic eADR iteration, the interessement moment in 
the actor-network theory (ANT) advanced as the researcher acted as a 
translator, aligning actors’ interests with the AI decision-support model’s 
goals. 

5.2 Problem Formulation 

5.2.1 AI Culture 

The first action design research (ADR) principle, focusing on practi-
cally experienced problems, may, for example, investigate why technology 
projects fail. Regarding such a concern, Alami (2016) emphasized the 
importance of including diverse end-user perspectives in system design to 
prevent such failure, a core tenet of socio-technical systems thinking. In 
the context of rapid technological evolution during Industry 4.0, social 
and technical environments must be harmonized to maintain productivity.
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This section examines the technology acceptance model (TAM) and the 
value-based adoption model (VAM) as frameworks for understanding AI 
culture among decision-makers. 

5.2.2 Technology Acceptance Model 

TAM evaluates how users perceive and adopt technology, focusing on 
perceived ease of use (PEoU) and perceived usefulness (PU) as key factors 
influencing their attitudes towards technological system usage. Developed 
by Davis (1989), the TAM enhances the understanding of the user accep-
tance process and examines the successful design and implementation of 
information systems. According to Chuttur (2009) and Alhashmi et al. 
(2019), TAM remains a widely used and evolving model for assessing 
technological adoption and clarifies three factor categories that explain a 
user’s motivation for system usage:

• PEoU: The degree to which individuals believe that using a partic-
ular system would free them from physical and mental effort.

• PU: The degree to which individuals believe using a particular 
system would enhance job performance.

• External factors: These typically include aspects related to manage-
ment, technology, operations, and various strategic elements that 
influence PEoU and PU. 

Therefore, TAM implies that the actual usage of a system will be influ-
enced by the user’s attitude, which, in turn, is controlled by the system’s 
PEoU and PU, which are ultimately influenced by various external factors. 

Figure 5.1 provides the general framework for this book’s approach 
to investigating a user’s attitude towards accepting new technological 
systems.

5.2.3 Value-Based Adoption Model 

Where TAM explains the intention of using technology (based on the 
system’s PeoU and PU), VAM assesses users’ intentions to adopt tech-
nology by weighing perceived benefits, such as improved performance 
and user enjoyment, against perceived sacrifices, which typically include 
technical challenges and financial costs (Kim et al., 2017). VAM provides
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Fig. 5.1 Technology acceptance model (Adapted from Davis [1989] and  
Alhashmi et al. [2019])

insights into user perceptions of value, making it an effective tool for 
evaluating AI adoption, particularly in voluntary contexts. To design the 
AI decision-support model, the benefits of the technology will be investi-
gated, examining the usefulness and enjoyment that users may experience. 
Meanwhile, the sacrifices will be analyzed in terms of the technical aspects 
of the system and the perceived costs that users might incur, as illustrated 
in Fig. 5.2.

As illustrated in Fig. 5.2, the benefits and sacrifices are consid-
ered primary factors in determining the system’s perceived value. This 
perceived value will, in turn, affect the ultimate intention to adopt new 
technologies. 

5.2.4 Comparing TAM and VAM 

As elucidated above, TAM and VAM focus on different aspects of user 
adoption, which are clarified in Table 5.1.

Using TAM and VAM in tandem enhances qualitative insights into AI 
adoption. The models are complementary, with TAM assessing attitudes
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Fig. 5.2 Value-based adoption model (Adapted from Kim et al. [2017])

Table 5.1 Comparison of TAM and VAM 

Focus TAM VAM 

Subject Employees in organizations Individual users 
Environment Traditional technologies New technologies 
Features Organizational work-related tech 

use. Costs of mandatory adoption. 
Usage created by an organization 

Personal tech use. Costs of 
voluntary adoption. Usage created 
by individuals 

Adapted from Kim et al. (2017)

and VAM evaluating perceived value. Together, they aim to comprehen-
sively understand the contextual AI culture, bridging the gap between 
quantitative validation and qualitative knowledge. 

5.3 Action Planning 

Data for the TAM and VAM models were collected using a question-
naire adapted from Yigitcanlar et al. (2022),  Sohn  and Kwon (2020), 
and Kim et al. (2007), which investigated factors influencing the PEoU 
and the PU of an AI decision-support model. Despite its quantitative 
origins, the questionnaire was utilized during group discussions and inter-
views to gather qualitative insights. Participants were provided context on



94 E. STEYN ET AL.

currently available AI models to support their responses to the guided 
questions, as outlined in Table 5.2. 

Table 5.2 Guided questions breakdown 

Model Focus area Guided questions 

TAM PEoU • What factors would facilitate an AI decision 
model’s ease of use and comprehensibility during 
interactions? 

• What factors make interacting with an AI decision 
model challenging? 

• What criteria would facilitate achieving the desired 
behavior from an AI decision model? 

PU • Would using an AI decision model improve your 
daily performance? 

• Would using an AI decision model enhance daily 
work effectiveness? 

• Would using an AI decision model enhance overall 
effectiveness? 

• What factors could lead to an AI decision model 
being unreliable? 

VAM Benefit: usefulness • Would an AI decision-making model enable you to 
accomplish tasks more efficiently? 

• Would an AI decision-making model improve your 
performance? 

Benefit: enjoyment • Would it be fun to interact with an AI decision 
model? 

• Would using an AI decision model bore you? 
Sacrifice: costs • What functions should the systems incorporate to 

ensure that the fees paid are reasonable? 
• What are your feelings regarding your 

organization’s expenditure on an AI 
decision-making model? 

Sacrifice: technical • What hardware would make interacting with an AI 
decision-making model easy? 

• What factors would impact the duration required 
to understand an AI decision-making model? 

• What perceived risks do you highlight regarding AI 
models making biased or incorrect decisions? 

• Do you harbor concerns or fears about the 
potential future displacement of human jobs by AI? 

• Do you believe that AI can release resources within 
your organization?
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After data collection, the responses were analyzed, and the findings 
were interpreted to gain new insights. Using a thematic approach, record-
ings and notes from the sessions were reviewed, with longer recordings 
transcribed in Microsoft Word. Transcriptions were evaluated for accu-
racy, and feedback was manually analyzed to identify thematic codes. The 
knowledge derived from these codes and themes, based on interviews and 
group discussions, is presented in the following sections. 

5.4 Artifact Creation: 

Technology Acceptance Model 

5.4.1 TAM: Perceived Ease of Use 

The first factor in assessing users’ attitudes toward new technologies is 
their PEoU. Figure 5.3 summarizes the factors influencing PEoU in the 
possible use of an AI decision model. 

Figure 5.3 highlights themes influencing a system’s PEoU, each 
discussed below with relevant codes and user perceptions:

Fig. 5.3 PEoU influences 
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• Features: AI systems should minimize user effort through value-
driven outputs, simplified interactions, and familiar interfaces. Effi-
cient input–output cycles, system integration, and adherence to 
technical standards ensure intuitive and seamless usability.

• Users: Ease of use also depends on the user’s skills, experience, and 
confidence; thus, practical training, HR support, and clear guidance 
are essential for effective adoption.

• Accessibility: Reliable uptime, AI-driven inputs, and broad hardware 
compatibility should enhance accessibility and usability, positively 
shaping user perceptions.

• Time utilization: Autonomous processes and task optimization 
should reduce input requirements, saving users time and improving 
ease of use.

• Outputs: Any output must be relevant, accurate, and understand-
able. It must combine clear text and contextual numerical data while 
avoiding unnecessary information that could overwhelm the user.

• Sources: A robust system ensures relevant, insightful outputs by 
drawing from accurate, up-to-date sources and actively identifying 
and addressing gaps to maintain relevance and reliability.

• Legality: AI systems must comply with legal standards by accurately 
distinguishing between lawful and unlawful actions to maintain trust 
and ensure compliance. 

5.4.2 TAM: Perceived Usefulness 

The second factor is the PU, which can be seen as the degree to which 
an individual believes using a particular system would enhance job perfor-
mance. Figure 5.4 illustrates all the themes and codes influencing users’ 
perceived performance.

As illustrated in Fig. 5.4, several themes influence users’ perceptions of 
a system’s usefulness, which are elucidated as follows:

• Features: To enhance perceived usefulness, an AI system must 
offer features tailored to user needs while demonstrating reliable, 
autonomous task performance that minimizes rework and upholds 
high standards. In regulated industries, standardized input forms 
and clear prompts support compliance and reduce confusion. Intel-
ligent input processing helps overcome human limitations, such as
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Fig. 5.4 PU influences

fatigue, and features like history logs promote transparency, trust, 
and ongoing training.

• Outputs: Ideal AI outputs should be accurate, ready-to-use, and 
require no further adjustments, offering creative insights beyond 
basic responses. They should fully address user queries, enrich data 
context, and introduce relevant additional information, while vali-
dation and source justification reinforce trust and confidence in the 
results.

• Sources: A system’s perceived usefulness depends on access to reli-
able, credible data sources. To ensure accuracy, fake or suspicious 
content must be excluded. Continuous source updates are crucial to 
ensure compliance with current standards, particularly in regulated 
industries.

• Users: Individual attitudes toward technology shape perceived 
usefulness, so AI systems should complement user skills while mini-
mizing required expertise to foster a positive perception.

• Interface: An intuitive interface is essential, as even a powerful 
backend is ineffective if users struggle to interact with the system. 
Simplicity and accessibility in design enhance both the user experi-
ence and perceived usefulness.
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• Confidence: User trust is vital to perceived usefulness, built through 
consistent, reliable outcomes supported by transparent justification 
and dependable sources.

• Emotion: The ability to interpret and respond to emotional cues 
enhances system effectiveness, as emotionally intelligent outputs 
improve performance on sensitive tasks and boost user satisfaction.

• Time utilization: AI systems enhance productivity by automating 
repetitive tasks, streamlining workflows through process analysis and 
bottleneck resolution, and adapting to time-sensitive environments 
for improved responsiveness. 

5.5 Artifact Creation: Value Adoption Model 

5.5.1 VAM Benefit: Usefulness 

The first aspect of VAM is the perceived usefulness, which refers to the 
extent to which a system enhances user performance. Figure 5.5 outlines 
the themes and codes affecting this perception. 

Fig. 5.5 Usefulness influences
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Per Fig. 5.5, several themes influence users’ perceptions of a system’s 
usefulness in context, which are elucidated as follows:

• Features: A new system’s effectiveness depends on its accuracy, 
versatility, and capacity to handle complex requests. Seamless integra-
tion with existing systems and consistent outputs ensure reliability. 
Recognizing system limitations and appropriately delegating non-
processable tasks is equally important to avoid rework and maintain 
efficiency.

• Outputs: Users seek unique, actionable insights rather than generic 
data when adopting a new system. To be valuable, the system 
must deliver tailored solutions that generate new knowledge and 
opportunities, ultimately contributing to a competitive advantage.

• Sources: Accurate, reliable, and up-to-date sources are essential for 
system adoption and for ensuring robust, trustworthy conclusions.

• Time utilization: New systems must streamline workflows by mini-
mizing delays from untested tasks, with well-trained models adapting 
to evolving needs to enhance time management and meet business 
deadlines.

• Users: Systems should enhance users’ decision-making by offering 
comprehensive arguments and acting as decision-support tools or 
autonomous decision-makers.

• Competitors: Market competition drives adoption, as systems that 
offer competitive advantages compel businesses to adapt to stay 
relevant. 

5.5.2 VAM Benefit: Enjoyment 

The second VAM aspect is perceived enjoyment, which refers to the plea-
sure users derive from interacting with a system, influencing its adoption. 
Figure 5.6 illustrates the identified themes.

As  indicated in Fig.  5.6, the various themes that influence a system’s 
perceived ease of use and affect users are clarified below:

• Features: To ensure intuitive interaction and user satisfaction, 
systems should align with user preferences and mimic familiar habits. 
To enhance the experience further, socially aware and non-offensive 
communication should be integrated. Avoiding overly complex
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Fig. 5.6 VAM: enjoyment influences

forms or repetitive inputs helps maintain ease of use and preserve 
user enjoyment.

• Outputs: System outputs should be accurate, visually varied, easily 
presentable, and tailored to provide detailed and summarized 
responses, enhancing user enjoyment and overall experience.

• Human Resources: Concerns over redundancy and reduced 
creativity can diminish user satisfaction with AI systems, whereas 
fact-based, impartial decision-making fosters confidence and 
enhances the overall experience.

• Time Utilization: AI systems should enhance individual efficiency 
by reducing task completion time, improving time management 
and overall process effectiveness. Demonstrating these time-saving 
benefits upfront increases user satisfaction and supports system 
acceptance.

• Technology: AI systems can enhance user enjoyment by generating 
excitement through their emerging potential, particularly during 
testing and capability exploration. Although the initial setup may be 
tedious and reduce early enjoyment, it lays the foundation for greater 
long-term satisfaction.
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• Users: Users value systems that challenge and enhance their skills 
and creativity while preserving human interaction. This analysis, 
grounded in the VAM, highlights key factors influencing AI adop-
tion, particularly perceived usefulness and enjoyment, and offers 
essential guidance for artifact creation. 

5.5.3 VAM Sacrifice: Costs 

The costs associated with a new system often shape users’ perceptions of 
the financial sacrifices required to adopt it. Figure 5.7 outlines the themes 
related to users’ perspectives on system-related costs. 

Figure 5.7 illustrates the themes that influence the cost-related aspects 
of operating the new system.

• Features: System features must align with user needs to ensure ease 
of use, trust, and effective task delegation. Paid systems should 
surpass free tools by offering personalized layouts, advanced func-
tionalities, regular updates, automated learning for adaptability,

Fig. 5.7 VAM: cost influence 
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seamless integration with existing systems, and robust security to 
manage risks tied to emerging technologies.

• Support: Successful adoption depends on strong after-sales support, 
including well-planned implementation to minimize business disrup-
tion, comprehensive user training to maximize system utility, and 
ongoing updates with responsive customer service to address user 
needs effectively.

• Human Resources: AI systems must avoid creating redundancies or 
increasing human resource demands, as misalignment undermines 
cost-effectiveness and hinders staff adoption.

• Technology: Systems must be validated for compliance with rele-
vant standards to ensure reliability and adherence to regulatory 
requirements.

• Time Utilization: New systems must improve efficiency and reduce 
workloads, as those that create redundancies or fail to enhance 
processing times may hinder adoption.

• Sources: AI systems must rely on accurate, up-to-date, and compre-
hensive sources to justify costs, and regular updates are essential to 
maintaining their value.

• Competitors: Competition often drives technological advancement, 
and organizations risk losing market relevance without comparable 
investments in AI.

• Cost–Benefit: Investments in new technologies must deliver measur-
able returns, such as cost savings, productivity improvements, or 
enhanced resource planning. 

5.5.4 VAM Sacrifice: Technical 

Technical factors influence users’ perceptions of system complexity when 
they adopt a new system, as summarized in Fig. 5.8.

As indicated in Fig. 5.8, the factors influencing system adaptability in 
terms of technical sacrifices include themes that focus on various risk, 
resource, and support-related aspects, elucidated as follows:

• Risks: Technical risks, such as non-compliance, financial losses, secu-
rity breaches, reputational damage, and complacency, can hinder 
adoption and must be proactively addressed during system design.
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Fig. 5.8 Technical influences

• Resources: Effective AI systems free up resources, enabling better 
time management, cost savings, and enhanced creativity. Resource 
optimization should balance associated risks.

• Users: Users’ willingness to adopt a system depends on their tech-
nical skills, generational differences, openness to change, and trust in 
the system. Positive interactions and minimal learning curves further 
promote adoption.

• Support: Effective support encompasses tailored training, user-
friendly help functions, and iterative system enhancements informed 
by user feedback.

• Displacement: Concerns over job displacement can affect adop-
tion. While automation may impact rule-based roles, history shows 
technology often creates new opportunities.

• Features: AI systems should offer flexible outputs, secure dash-
boards, and seamless integration, with successful adoption hinging 
on balancing system complexity with user benefits.

• Hardware: Systems should seamlessly integrate with existing devices 
and support advanced inputs, such as text, voice, and image recog-
nition, while minimizing excessive demands on user hardware that 
could deter adoption.
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5.6 Evaluation 

5.6.1 Artifact Evaluation 

The artifact creation in this iteration also followed the third and fourth 
ADR principles, emphasizing organizational involvement and the interde-
pendence of researcher and practitioner roles. The researchers provided 
academic insights on TAM and VAM, while industry participants shared 
practical knowledge on factors influencing attitudes (TAM) and adop-
tion (VAM) in their specific context. This collaboration resulted in the 
dual components of the _SocialArtifact, the first of which is presented in 
Fig. 5.9. 

Figure 5.9 illustrates the factors and interrelationships influencing the 
TAM components, impacting the PEoU and PU aspects. In designing 
the AI decision-support model, stakeholders should be aware of these 
elements to mitigate the adverse effects on user attitudes. 

The second component of the _SocialArtifact, presented in Fig. 5.10, 
focuses on the VAM aspects and highlights the factors that affect 
users’ perceived value of new technologies. Perceived benefits and sacri-
fices influence adoption, and balancing these elements determines the 
system’s overall perceived value. Aligning with socio-technical thinking,

Fig. 5.9 _SocialArtifact: TAM influences’ perspective (Adapted from Davis 
[1989]) 
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Fig. 5.10 _SocialArtifact: VAM influences’ perspective (Adapted from Kim 
et al. [2017]) 

stakeholders must consider technical and social environments when imple-
menting change. 

Figure 5.10 demonstrates the factors and interrelationships that influ-
ence the VAM components, affecting both the benefit and sacrifice 
aspects. Figure evaluation confirms that addressing these influences is 
crucial for the effective adoption of technology. 

For purposes of this book, the resulting knowledge, integrating the 
insights from Figs. 5.9 and 5.10, is termed the _SocialArtifact. 

5.6.2 Artifact Verification 

Verification of the final _SocialArtifact is conducted through a twofold 
process: first, ensuring the eADR iteration design meets the relevant sub-
objective requirements; second, confirming that the _SocialArtifact was 
correctly constructed to establish the prevailing AI culture within the _ 
DecisionArtifact. 

This diagnostic iteration provided key insights into AI culture and 
facilitated the integration of TAM and VAM into the eADR process. Veri-
fication confirms that the _SocialArtifact addresses the key objective by 
identifying themes influencing AI adoption and use. Figures 5.9 and 5.10
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illustrate the factors identified during artifact creation related to potential 
user adoption, further supporting verification. 

5.7 Learning and Reflection 

5.7.1 Artifact Validation 

The final _SocialArtifact, depicted in Figs. 5.9 and 5.10, is validated by 
confirming the presence of key elements that ensure alignment with the 
primary objective. Validation serves two purposes: confirming that the 
design meets the objective’s requirements and ensuring that the artifact 
effectively achieves its intended goal. 

The primary objective is to develop an AI decision-support model 
that addresses technical and social challenges. Enabled by the eADR 
approach, comprehensive data collection informed the construction of 
the _SocialArtifact, which supports this objective by identifying crit-
ical factors influencing technology adoption and organizational change. 
This chapter successfully captures participants’ perspectives on AI culture, 
synthesizing them into a _SocialArtifact that functions within the broader 
_DecisionArtifact. 

5.7.2 ANT Interessement Progression 

After the second diagnostic iteration, the interessement moment advanced 
as the researcher acted as a translator, aligning actors’ interests with the 
AI decision-support model’s goals. 

After completing this iteration, the interessement moment continued 
with the researcher acting as translator and interacting with the source 
actors to achieve the goal of the network. During this moment of transla-
tion, new actors have passed through the obligatory point and can interact 
with other actors. Figure 5.11 illustrates the updated ANT network after 
completing the second diagnostic iteration.

In Fig. 5.1, ANT interessement progression illustrates the evolution 
of the network, including interactions among actors and the influence of 
external actors on organizational change.
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Fig. 5.11 ANT interessement progression (second diagnostic)

5.8 Summary 

This chapter contributed to developing the envisioned AI decision-
support model by further investigating the social environment, i.e., 
elaborating and expanding the knowledge developed during the earlier 
_DecisionArtifact. Using eADR diagnosis iterations, data from mid-level 
and senior-level management revealed additional aspects that may influ-
ence attitudes and adopting new technologies. The TAM and VAM 
models, culminating in the _SocialArtifact, provide a comprehensive 
framework for addressing the technical and social dimensions of change. 
The chapter will delve deeper into the programmability of decisions. 
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CHAPTER 6  

Diagnostics: Decision Programmability 

Abstract This chapter concludes the diagnostics phase and assesses the 
programmability of the _DecisionArtifact within the context of the 
artificial intelligence (AI) decision-support model. Building on the socio-
technical concepts from the previous chapter, this iteration aligns with 
action design research’s (ADR) principles, combining practice-inspired 
realities with theory-based research. It emphasizes a systematic approach 
to AI-enabled decision-making, evaluating programmability across struc-
tured, semi-structured, and non-programmable decision types to high-
light the need for a robust dataset. A literature-based dataset design 
framework was introduced in the first of two elaborated action design 
research (eADR) cycles, transforming the _DecisionArtifact into a dataset 
framework, enabling discussions with industry professionals on relevance, 
usability, and quality. The chapter demonstrates, in the context of the 
actor-network theory (ANT), the dataset’s effectiveness in bridging the 
gap between the _DecisionArtifact and an AI environment. Evaluating 
the dataset on accuracy, completeness, and methodology validated its suit-
ability for programming decision rules. The dataset was refined in the 
second eADR cycle, guided by industry insights, establishing it as the _ 
DataSetArtifact. 

Keywords Action design research · Actor-network theory · Artificial 
intelligence · Decision-support model · Programmability
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6.1 Introduction 

The previous chapter examined the socio-technical aspects of the envi-
sioned artificial intelligence (AI) decision-support model, focusing on 
factors that influence attitudes and the adoption of new technology 
systems. Like the earlier diagnostic iterations in Chapters 4 and 5, this  
chapter follows the essential elaborated action design research (eADR) 
roadmap in two cycles by reflecting on the problem perspectives, the build 
and evaluation aspects, and concluding with a reflection on the realized 
outcomes. The chapter highlights the researcher’s role as a translator in 
the context of the actor-network theory (ANT), engaging with source 
actors to enhance the programmability of decisions. 

6.2 Programmability of Decisions: First Cycle 

6.2.1 Problem Formulation 

Action design research’s (ADR) first and second principles require 
artifact design to blend practice-inspired realities with theory-based 
research, using real-world issues and scientific literature. In the context 
of this book’s objectives, organizations must adapt to evolving technolo-
gies to remain efficient and competitive (Treacy, 2022). This chapter 
supports the book’s objectives by exploring the programmability of the 
_DecisionArtifact through AI-driven decision-making. 

6.2.1.1 Decision-Making and AI 
The integration of AI in decision-making has been anticipated for 
some time. Licklider (1960) envisioned a man–machine symbiosis where 
computers support human decision-making. In the context of Industry 
4.0, technology and automation are driven by data exchanges (Sarker, 
2022), underscoring the importance of data as a key resource. As such, 
organizations must assess how AI models can enhance decision-making 
processes. However, effective AI-enabled decision-making requires an 
understanding of the decision-making process. Lassoued et al. (2020) 
define decision-making as a structured sequence of steps leading to
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the best alternative. Power et al. (2019) emphasize the role of people, 
methods, systems, and data in this process. Fülöp (2005) outlines an 
eight-step framework, with each step building upon the prior step, 
aligning with Power et al.’s (2019) view of decision systems as a combi-
nation of human, machine, and task elements. Figure 6.1 illustrates this 
process. 

As  shown in Fig.  6.1, the systematic decision-making process begins 
by identifying a trigger that necessitates a decision. This is followed by 
defining the proposal requirements, establishing the decision’s goal, and 
focusing on desired outcomes beyond functional needs. Subsequently, 
possible alternatives to meet the goals and evaluation criteria are iden-
tified, after which the basis for the decision is set. Finally, alternative 
outcomes are evaluated, and the best option is implemented. 

In our context, the AI decision-support model utilizes a knowledge 
base compiled by human experts to transition this process into an expert 
system (Sarker et al., 2021). Though initially static, AI-based technologies 
can enhance these systems by automating rule generation based on past 
trends (Sarker et al., 2021). Figure 6.2 conceptually illustrates such an 
expert decision model.

Figure 6.2 illustrates user interaction with a theoretical decision system. 
A decision is triggered (Step 1) and submitted via a user interface. The

Fig. 6.1 Decision-making process (Adapted from Fülöp [2005]) 
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Fig. 6.2 Expert AI decision model (Adapted from Fülöp [2005] and  Sarker  
[2022])

inference engine (Steps 2–5) processes the query, selecting relevant rules 
from the knowledge base to conclude (Step 6). The system then presents 
alternative solutions (Step 7), allowing the user to make an informed 
decision (Step 8). 

Furthermore, ML can enhance the function and effectiveness of the 
knowledge base by identifying patterns and automating decision rules 
(Sarker, 2022) and improving decision-making by recognizing patterns 
linked to desirable and undesirable outcomes (Power et al., 2019). For 
the purpose of this book, the programmability of these rules must be 
examined to integrate the _DecisionArtifact into an AI environment. The 
following sections will explore how to achieve such integration. 

6.2.1.2 Programmability of Decisions 
The programmability of a decision involves understanding its nature and 
creating a framework to integrate various decision types into an AI envi-
ronment. Historically, Donovan and Madnick (1977) classified decision 
systems into structured (routine, well-defined decisions), institutional 
(recurring but less structured decisions), and ad hoc (unanticipated, 
one-time decisions). More recently, Pomerol and Adam (2004) similarly 
classify decisions as programmable (routine, objective, and data-driven) or 
non-programmable (unique, subjective, and based on incomplete infor-
mation). This book aligns with these classifications, viewing decisions as
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programmable (structured), semi-programmable (institutional), or non-
programmable (ad hoc). In this context, programmable decisions rely on 
predefined rules or past outcomes, as noted by Uçaktürk and Villard 
(2013), which form the knowledge base that supports an inference 
engine. Furthermore, ML enhances this by automating rule generation 
(Power et al., 2019), reducing expert intervention. In contrast, non-
programmable decisions require deeper exploration (Uçaktürk & Villard, 
2013). 

A framework is needed to structure decision types into a dataset 
that enables AI models to facilitate AI-based decision-making. Datasets 
simplify the implementation of AI models and enhance their capabilities 
(Zhou et al., 2020). The next step is to determine how to develop a 
dataset that supports the programmability of the DecisionArtifact. 

6.2.2 Action Planning 

This diagnostic iteration explores a literature-based approach to dataset 
design that supports decision programmability in an AI environment. 
The following sections will discuss data collection and processing. Before 
engaging industry professionals for dataset evaluation, it is essential to 
outline the dataset development process first. This understanding will 
facilitate effective communication between researchers and practitioners, 
aligning them with the objectives of the interview. This iteration follows 
Khan and Hanna’s (2022) dataset development and implementation 
framework to ensure consistency, as shown in Fig. 6.3.

Figure 6.3 outlines seven steps for developing and implementing a 
dataset, ensuring its accuracy for AI applications. In line with the book’s 
objective, the focus will be on applying steps one through four, discussed 
below.

• Problem Formulation: Framing problems as questions is vital for 
data science. This book’s key question is how the _DecisionArtifact 
can be interpreted within an AI environment. The solution lies 
in developing a dataset framework for integration into the AI 
decision-support model.

• Data Collection: The step involves data mining to gather relevant 
dataset content. However, this study focuses on collecting data to 
guide dataset design rather than its specific content.
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Fig. 6.3 Dataset development (Adapted from Khan and Hanna [2022])

• Data Cleaning: After data collection, the data cleaning step struc-
tures unorganized data and fills in missing values to ensure complete-
ness. In this book, the focus is not on cleaning dataset content but 
on refining collected data to guide dataset development.

• Data Annotation: Data annotation involves assigning labels to data, 
aiding the processing workflow. This book will apply annotations to 
processed data after step 3. 

6.2.3 Artifact Creation 

The four steps outlined above were used to create a framework data 
set, facilitating discussions with industry professionals on its viability for 
programming the DecisionArtifact into an AI environment, as shown in 
Fig. 6.4.

Figure 6.4 illustrates how the four steps converted the _ 
DecisionArtifact into a data set to support decision programmability 
discussions, clarified below:

• Problem Formulation: Real-world problems were reframed as ques-
tions for industry professionals, aligning with the book’s primary
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Fig. 6.4 Conversion into data set framework

objective of understanding decision programmability in an AI 
context. This required gathering knowledge on decision-making and 
its influencing factors.

• Data Collection: The _DecisionArtifact guided dataset develop-
ment, ensuring the inclusion of relevant data. For simplicity and 
adaptability, the dataset presentation followed established formats.

• Data Cleaning: Data refinement occurred in real-time during the 
interviews conducted during the first diagnostic iteration, elimi-
nating the need for post-interview corrections.

• Data Annotation: Labels were attached to the _DecisionArtifact, 
improving dataset accuracy. Additional fields were introduced to 
capture company-specific details, forming identifier and attribute 
fields for customized thematic code and theme tracking. 

The final dataset, shown in Fig. 6.4, integrates thematic codes and themes 
from the _DecisionArtifact. The identifier and attribute fields allow 
organizations to add unique data. In contrast, the target field enables 
machine learning to refine decision trees for performance metric-based 
recommendations.
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6.2.4 Evaluation 

The artifact from the current iteration resulted in a framework dataset to 
facilitate discussions with industry professionals on decision programma-
bility. This dataset bridges the gap between the _DecisionArtifact and an 
AI environment, enhancing its programmability. As data entry is beyond 
the scope of this book, the focus is on evaluating the dataset’s usability 
and identifying the necessary data types for AI integration. 

6.2.5 Reflection and Learning 

Each eADR cycle’s reflection and learning can prompt another cycle 
within the iteration, advance to the next stage, or revisit a previous 
cycle for a deeper understanding of the problem (Mullarkey & Hevner, 
2019). Based on current findings, the cycle progresses to a second diag-
nostic cycle, in which the framework dataset is assessed and validated with 
industry professionals, as discussed in the next section. 

6.3 Programmability of Decisions: Second Cycle 

6.3.1 Problem Formulation 

It has been indicated earlier that each eADR iteration’s problem formula-
tion should build on reflections from the previous cycle. The framework 
dataset was developed using the _DecisionArtifact and literature-based 
dataset design data in the first diagnostic cycle. To align with the third 
ADR principle, a practitioner review is needed to assess whether the 
literature-based design is suitable for an AI environment. This evaluation 
will determine if the framework dataset can facilitate the integration of the 
_DecisionArtifact into AI. The approach to evaluating its programmability 
is discussed below. 

The rapid increase in data availability has made it essential across 
various domains and professional roles. Data is increasingly used to 
enhance services, influence policies, create business value, and support 
informed decision-making. However, despite this abundance, challenges 
remain in finding, accessing, and evaluating data sources. To address this, 
Koesten et al. (2020) propose assessing data sets based on three key 
themes:
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• Relevance assesses whether a data set aligns with the task, consid-
ering its scope and granularity.

• Usability evaluates how easily users can interact with the dataset, 
considering factors like format, language, and units of measurement.

• Quality encompasses subjective factors like accuracy and complete-
ness used to assess a data set. These themes provide a framework for 
evaluating datasets and their effectiveness. 

6.3.2 Action Planning 

This cycle seeks practitioner feedback on the data set design to validate 
its applicability and relevance. Industry discussions will be based on the 
three evaluation themes: relevance, usability, and quality. The assessment 
will refine the framework data set and incorporate best practices. As the 
data population exceeds the book’s scope, a qualitative evaluation will be 
conducted. 

Data was collected from two perspectives: participants at an infor-
mation technology (IT) company specializing in dataset development 
and an academic AI specialist. Both perspectives provided insights on 
programmability based on the three evaluation themes. The IT company 
participated in a group discussion, with eight participants who possessed 
expertise in AI, business management, system design, data administration, 
and database programming. The academic AI specialist was interviewed 
on a one-to-one basis. 

Discussions began with a brief overview of the _DecisionArtifact, 
followed by a presentation of the framework dataset. Participants assessed 
its applicability for integrating the _DecisionArtifact into an AI environ-
ment, focusing on relevance, usability, and quality, with findings presented 
below. 

6.3.3 Artifact Creation 

6.3.3.1 Data Set Design Feedback 
After the workshops, participants’ feedback on relevance, usability, and 
quality was collected and summarized. The findings will be presented 
under three categories.
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• Relevance (clarified in Table 6.1), was the first evaluation theme, 
assessing whether the framework dataset aligned with decision-
making models. Key aspects included: 

– Scope: Assessing whether the dataset is suitable for decision-
making. 

– Granularity: Evaluating its ability to capture detailed informa-
tion. 

– AI Integration: Assessing its applicability within an AI model.

• Documentation: Ensuring the dataset was well-described. 

The findings on relevance are discussed in Table 6.1.

• The second evaluation theme, usability (clarified in Table 6.2), was 
assessed through the following attributes: 

– Format and comparability: Ensuring correct data types and 
structure. 

– Language: Verifying industry-acceptable and compatible termi-
nology. 

– Dataset Size: Discuss future considerations, as the final size 
remains undetermined.

Table 6.1 Relevance 

Attribute Considerations 

Scope Participants agreed that the proposed data set offered a strong 
foundation for decision support 

Granular details Identifier and attribute variables enable granular data capture for 
dataset integration, while the target variable sets the granularity and 
requires adjustments if the outputs lack meaning 

Context The context of the data set will be refined by comparing targets 
with their expected outputs. System outputs will guide AI 
integration, with suitability depending on the AI model’s focus. 
Alignment with the model’s context is crucial 

Documentation The proposed data set lacks detailed variable descriptions. 
Participants suggested adding more user-relevant details, which will 
be included in the final model 
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Table 6.2 Usability 

Attribute Considerations 

Format All data types, except the general type, were considered sufficient. As 
new data emerge, data types may evolve, with the final dataset 
refining the general type to a more specific format 

Comparability Clear documentation of units of measure is necessary for dataset 
comparability, which will be updated in the final dataset 

Language Participants emphasized the importance of clear headers and agreed 
that the current data set’s headings were well-documented 

Size The dataset size affects model accuracy and requires iterative 
adjustments to the entry for balance. A balanced dataset ensures that 
all entry combinations are represented accurately for optimal ML 
outputs. Actual data is needed to evaluate the impact of the current 
dataset on accuracy

• As data sources are not yet available, the final evaluation theme and 
quality considerations will be addressed in the final model design. 
However, the analysis will be concluded in the context of three 
aspects (listed in Table 6.3), as follows: 

– Accuracy: Approaches to ensuring data accuracy. 
– Completeness: The impact of data completeness on dataset 
quality. 

– Methodology: Best practices for data collection. 

Participant feedback also provided key considerations for future modi-
fications to the framework dataset, as outlined in Table 6.4.

Table 6.3 Quality 

Attribute Considerations 

Accuracy Industry professionals should verify the accuracy of data sources. 
Advanced ML techniques can identify non-contributory features, 
requiring an iterative approach to refine dataset accuracy 

Completeness While ML techniques improve accuracy, completeness is more crucial, 
as dataset success relies on the volume of data. Ensuring source 
integrity is also key to filtering out irrelevant data 

Methodology Data collection methods differ for secure internal and unsecured 
external sources. Software-driven data entry enhances accuracy and 
ensures the correct data types are used 
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Table 6.4 Future considerations 

Theme Attribute Considerations 

Usability Usability Enhancing dataset representation with new features requires 
adding more data entries. Accuracy should be evaluated 
iteratively with each update 

Quality Accuracy Avoid empty values when adding data entries to maintain 
dataset balance and accuracy 

Quality Accuracy ML techniques, such as LIME and Shapley, enhance dataset 
accuracy and provide output explanations, thereby increasing 
confidence in the AI model 

6.3.3.2 Final Data Set Design 
Table 6.5 presents the final dataset design, incorporating the frameworks 
and discussion outcomes from the prior cycles. 

The final dataset in Table 6.5 builds on the earlier cycles and feed-
back from Tables 6.1 to 6.3. Industry input resulted in minor structural 
adjustments, confirming the dataset’s relevance, usability, and quality. 
Accepted for the following eADR stages, it will be referred to as the _ 
DataSetArtifact in the next chapter’s design iteration.

Table 6.5 _DataSetArtifact 

Variable Role Data type Description 

Code Feature Text Codes from the _DecisionArtifact findings should 
contain only text entries. These entries are flexible and 
can be updated as needed 

Theme Feature Text Themes from _DecisionArtifact findings enhance the 
explanation of Code variables and provide granularity. 
These flexible text entries can be updated as needed 

Identifier Feature Text The user-generated identifier provides granularity by 
describing the Code/Theme variables. It contains text 
values and offers flexibility, with no fixed list of entries 

Attribute Feature Text The attribute field captures the finest detail, explaining 
specific aspects of the identifier. It is text-based, 
user-generated, and has no fixed list of entries 

Rating Target Char The rating variable enables users to rate feature 
variables using integers (0–5) or a Boolean value 
(“yes”/ “no”) 
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6.3.4 Evaluation 

The artifact was developed following the third and fourth ADR principles, 
which emphasized the organizational involvement in shaping the artifact 
while acknowledging the collaborative influence of researchers and practi-
tioners. The researcher provided academic insights based on the literature 
dataset, while industry professionals contributed practical considerations 
for dataset design. Their combined input shaped the final artifact, with 
the current cycle’s findings highlighting programmability considerations 
through dataset design requirements. Successfully executing the eADR 
diagnosis iteration was essential for achieving the set objective. The first 
cycle contributed foundational knowledge of the dataset, while the second 
cycle refined the dataset within the eADR framework, reinforcing the 
study’s understanding of AI applications. The _DataSetArtifact verified 
its role in enabling the programmability of the _DecisionArtifact within 
an AI environment. These findings confirm its usability in fulfilling the 
objective. 

6.3.5 Reflection and Learning 

The _DataSetArtifact was validated by ensuring three key elements: align-
ment with the primary objective, an appropriate design approach, and 
the effectiveness of the proposed solution. The aim is to design an 
AI framework that illustrates decision programmability. This necessi-
tates a structured dataset to implement the DecisionArtifact in an AI 
environment. The current diagnostic cycles played a crucial role in devel-
oping this dataset, ensuring its relevance to the objective. The iterative 
eADR approach enabled dataset development, which was further refined 
through industry feedback. Literature-driven dataset design principles 
guided the creation and evaluation of the final _DataSetArtifact. 

After completing the third diagnostics iteration, the interessement 
moment was finalized, with the researcher acting as a translator to align 
source actors with the network’s goal. No new actors passed through 
the obligatory point, maintaining the focus on reaching enrollment. 
Figure 6.5 presents the updated ANT network post-diagnosis iteration.

Figure 6.5 highlights the researcher’s role as a translator, engaging with 
source actors to enhance the programmability of decisions. During the 
third iteration of diagnosis, the researcher developed a dataset to bridge



122 E. STEYN ET AL.

Fig. 6.5 ANT interessement progression (third diagnostic)

the decision-making of source actors with AI implementation, ensuring 
their understanding of the AI model’s application. 

This process strengthened the alliance between the translator and 
source actors, fostering belief in the network’s goal. Seeing their inputs 
transformed into new knowledge and a functional dataset reassured 
source actors, enabling them to advocate for the network’s success to 
target actors. With this alignment, the network is ready to progress to the 
following translation stage. 

6.4 Summary 

The chapter aimed to achieve the objectives by establishing a framework 
for programming the _DecisionArtifact within an AI environment. To 
accomplish this, a literature-inspired framework dataset was developed, 
incorporating elements of the _DecisionArtifact and a unique variable to 
enhance its functionality. 

The framework dataset was then evaluated by industry professionals 
through a group discussion and interview, assessing its programmability 
against three literature-based themes. The feedback was positive, vali-
dating the dataset and providing best practices to future-proof the dataset 
and future data entries.
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The _DataSetArtifact met the requirements, confirming its role in 
enabling the _DecisionArtifact’s programmability. The chapter concluded 
the diagnosis phase, producing the final _DiagnosisArtifact. In the next 
chapter, the artifacts from the various diagnostic iterations will be inte-
grated into the design iteration. 

References 

Donovan, J. J., & Madnick, S. E. (1977). Institutional and ad hoc DSS and 
their effective use. ACM SIGMIS Database: The DATABASE for Advances in 
Information Systems, 8(3), 79–88. 

Fülöp, J. (2005). Introduction to decision making methods. BDEI-3 workshop, 
Washington (pp. 1–15). 

Khan, M., & Hanna, A. (2022). The subjects and stages of AI dataset develop-
ment: A framework for dataset accountability. The Ohio State Technology Law 
Journal, 19(2), 171–172. 

Koesten, L., Simperl, E., Blount, T., Kacprzak, E., & Tennison, J. (2020). Every-
thing you always wanted to know about a dataset: Studies in data summarisa-
tion. International journal of human-computer studies, 135, 102367. 

Lassoued, K., Awad, A., & Guirat, R. (2020). The impact of managerial empow-
erment on problem solving and decision making skills: The case of Abu Dhabi 
University. Management Science Letters, 10(4), 769–780. 

Licklider, J. C. (1960). Man-computer symbiosis. IRE Transactions on Human 
Factors in Electronics, 1(1), 4–11. 

Mullarkey, M. T., & Hevner, A. R. (2019). An elaborated action design research 
process model. European Journal of Information Systems, 28(1), 6–20. 

Pomerol, J. C., & Adam, F. (2004). Practical decision making—From the 
legacy of Herbert Simon to decision support systems. Actes de la Conférence 
Internationale IFIP TC8/WG8 (pp. 647–657). 

Power, D. J., Heavin, C., & Keenan, P. (2019). Decision systems redux. Journal 
of Decision Systems, 28(1), 1–18. 

Sarker, I. H. (2022). AI-based modeling: Techniques, applications and research 
issues towards automation, intelligent and smart systems. SN Computer 
Science, 3(2), 158. 

Sarker, I. H., Khan, A. I., Abushark, Y. B., & Alsolami, F. (2021). Mobile expert 
system: Exploring context-aware machine learning rules for personalized 
decision-making in mobile applications. Symmetry, 13(10), 1975. 

Treacy, S. (2022). A roadmap to artificial intelligence: Navigating core impacts 
to successfully transform organisations. In P. Griffiths & C. Stockman (Eds.), 
Conference proceedings. 4th European Conference on the Impact of Artificial



124 E. STEYN ET AL.

Intelligence and Robotics (pp. 85–92). Academic Conferences International 
Limited Curtis Farm. 

Uçaktürk, A., & Villard, M. (2013). The effects of management information 
and ERP systems on strategic knowledge management and decision-making. 
Procedia—Social and Behavioral Sciences, 99, 1035–1043. 

Zhou, X., Chai, C., Li, G., & Sun, J. (2020). Database meets artificial intel-
ligence: A survey. IEEE Transactions on Knowledge and Data Engineering, 
34(3), 1096–1116.



CHAPTER 7  

Design: Decision-Support Model 

Abstract This chapter describes the elaborated action design research 
(eADR) design iteration, elucidating the design of the envisaged arti-
ficial intelligence (AI) decision-support model. This iteration inte-
grates the earlier developmental diagnostic iterations’ _DecisionArtifact, 
_SocialArtifact, and _DataSetArtifact into the _DesignModelArtifact, 
guided by a literature-based, stage-driven approach. This artifact encom-
passes two operational environments: technical and social. In the context 
of the actor-network theory (ANT), no new actors emerged during 
this stage, and the actor-network transitioned from interessement to 
the enrollment phase of transition. In the technical environment, the _ 
DataSetArtifact serves as the knowledge base. User queries trigger specific 
codes that impact key performance indicators (KPIs), with the knowl-
edge base assisting the inference engine in evaluating and providing 
feedback through the user interface. The social environment focuses on 
user adoption, with the _SocialArtifact serving as the foundation for 
the human experience. It emphasizes the technology acceptance model 
(TAM), particularly perceived ease of use (PEoU) and perceived useful-
ness (PU), as well as the value-based adoption model (VAM), which 
highlights benefits and sacrifices. 

Keywords Actor-network theory · Artificial intelligence · Elaborated 
action design research · Key performance indicators · Technology 
acceptance model · Value-based adoption model
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7.1 Introduction 

This chapter outlines the design iteration focused on developing an initial 
artificial intelligence (AI) decision-support model that is both practice-
inspired and theory-grounded, capable of operating within technical and 
social environments. Building on insights gained from earlier diagnostic 
iterations, the _DesignModelArtifact developed in this chapter inte-
grates key knowledge related to the business problem (_DecisionArtifact), 
the organizational AI culture (_SocialArtifact), and the programma-
bility of decisions (_DataSetArtifact). Consistent with previous chapters, 
this section applies the stages of the elaborated action design research 
(eADR) model to present the AI design approach (problem perspec-
tive), detail the data collection process (action planning perspective), and 
describe the design of the iteration-specific artifact. After completing the _ 
DesignModelArtifact, the actor-network as described in the actor-network 
theory (ANT), was updated. 

7.2 Problem Formulation 

The first and second action design research (ADR) principles emphasize 
the importance of addressing both theoretical and practical field prob-
lems (Sein et al., 2011), a view supported by Charnley et al. (2011), who 
stress the need to incorporate multiple perspectives in system design. In 
alignment with this, the following literature-based approach ensures that 
diverse viewpoints are considered in developing the model. Kraus et al. 
(2022) contribute by proposing a stage-based framework for AI system 
development, as illustrated in Table 7.1.

Table 7.1 presents a literature-based approach outlining the key steps 
in designing an AI model following the objectives of this book. These 
steps include forming a team, defining goals, selecting appropriate tools, 
setting parameters, building and programming the model, training with 
user data, testing, and optimization. However, this book limits its scope 
to the initial design phase, explicitly focusing on team formation, goal 
definition, tool selection, and parameter setting. As industry input was
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Table 7.1 AI design algorithm 

AI setup stage Stage outcomes eADR stage 

Team formation Identifying the AI model development 
team 

Problem formulation 

Goal definition Establish the AI model’s objective Problem formulation 
Tool selection Choose a model that fits the AI system’s 

goal 
Action planning 

Model parameters Configure system parameters Artifact creation 
Model training Train the system using ML techniques N/A 
Model optimization Test and optimize the model N/A 
Result analysis Assess system performance N/A 

Source Adapted from Kraus et al. (2022)

already gathered during the three diagnostic iterations, the researchers 
will act as the sole team members for this phase. 

7.3 Action Planning 

This section discusses the tools used to develop the AI model in 
accordance with the tool selection step outlined above. This design 
iteration aims to integrate the _DecisionArtifact, _SocialArtifact, and _ 
DataSetArtifact into a cohesive design model. These three artifacts are the 
foundational tools for constructing the AI decision-support model, which 
will be built using key components derived from earlier diagnostic itera-
tions, including the decision-making framework, a structured and usable 
AI dataset, and insights into the social environment. 

7.4 Artifact Creation 

7.4.1 AI Decision-Support Design Model 

The model parameters are visually depicted to highlight all components 
of the design. Figure 7.1 illustrates the integration of the three diagnostic 
iteration artifacts into a unified model.

Figure 7.1 presents the various components of the resulting _ 
DesignModelArtifact, organized into two sections representing the envi-
ronments in which the model operates: the social and technical domains.
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Fig. 7.1 _DesignModelArtifact

The figure highlights the contributions and applications of all rele-
vant artifacts from the earlier iterations. The model’s functioning within 
these environments will be further explained in the following sections, 
structured under technical and social headings. 

7.4.2 Technical Environment 

In this model, a user initiates a query through the interface, which is then 
processed by the inference engine. The engine accesses relevant rules and 
data from the knowledge base, applies them, and generates a response 
for the user. In the context of this book, the knowledge base is repre-
sented by the _DataSetArtifact. When a query is submitted, it activates 
specific codes linked to various key performance indicators (KPIs). The 
inference engine identifies the affected KPIs, assesses their impact, and 
formulates an appropriate response, which is then communicated back to 
the user. Figure 7.2 illustrates this process through an example of the 
firm’s financial infrastructure activity.

Figure 7.2 illustrates a single value driver identified during earlier iter-
ations. However, the _DesignModelArtifact consolidates all activities to 
reflect the interdependencies across multiple KPIs. The thematic codes
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Fig. 7.2 Interworking of inference engine and knowledge base

and themes generated in the _DataSetArtifact are stored in the knowledge 
base. At the same time, decision trees, constructed from the relation-
ships between value drivers and KPIs, are housed within the inference 
engine. For example, when a user queries the AI model about human 
resources (HR) resources, the inference engine accesses relevant informa-
tion from the knowledge base, evaluates its influence across various KPIs, 
and determines its overall impact on the associated value driver. 

7.4.3 Social Environment 

AI system design must incorporate socio-technical considerations, 
ensuring that changes in the technical environment are aligned with social 
factors and contexts. This involves two key areas: the technology accep-
tance model (TAM), which focuses on perceived ease of use and perceived 
usefulness, and the value-based adoption model (VAM), which empha-
sizes the balance between perceived benefits and sacrifices. The following 
sections highlight the key social aspects evaluated during the development 
of the _DesignModelArtifact.
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7.4.3.1 TAM: Perceived Ease of Use (PEoU) 
A system’s usability influences adoption. To enhance ease of use, the _ 
DesignModelArtifact incorporates:

• Multi-platform Accessibility: Ensures users can access the system 
from any device, at any time.

• Language adaptability: Supports key languages based on operational 
regions, with expansion as needed.

• User-friendly Interface: Mimics familiar platforms (e.g., social media, 
streaming services) for intuitive interaction.

• Efficient Query Processing: Optimized knowledge base and infer-
ence engine for fast, relevant responses.

• Contextualized Outputs: Prevents information overload by ensuring 
responses are relevant, unique, and tailored to the industry.

• Learning Capabilities and Training Support: Adapts through user 
interaction and provides robust onboarding resources. 

7.4.3.2 TAM: Perceived Usefulness (PU) 
A system must demonstrate value to encourage user adoption. Key design 
considerations include:

• Objective Decision-Making: Identifies situations where emotion-free 
decisions are necessary.

• Risk Identification: Detects potential risks within its operational 
scope.

• Contextual Insights: Enhances data interpretation by illustrating 
potential impacts.

• Justified and Trustworthy Outputs: Cites sources to build user 
confidence and minimize rework.

• Decision-Support and Collaboration: Facilitates discussions within 
organizations by providing well-supported recommendations.

• Source Validation: Identifies reliable information and filters out false 
data.

• Resource Efficiency: Saves time and effort, improving the perceived 
usefulness of the system.
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7.4.3.3 VAM: Benefits 
Users weigh the benefits of the system against potential sacrifices. Key 
advantages include:

• Competitive Edge: Enhances decision-making in a highly competi-
tive industry.

• Seamless Integration: Reduces reliance on multiple systems.
• Advanced Data Processing: Generates detailed insights by analyzing 
large datasets.

• User Engagement: Encourages interaction with cutting-edge AI 
technologies.

• Personalized Outputs: Provides tailored recommendations beyond 
predefined rules.

• Continuous Improvement: Learns from user interactions to refine 
future outputs.

• Skill Development: Helps users enhance their expertise through AI-
driven insights. 

7.4.3.4 VAM: Sacrifices 
To minimize adoption barriers, the system addresses potential concerns:

• Return on Investment: Justifies costs through financial savings and 
efficiency gains.

• Privacy and Security: Maintains data integrity, unlike free software 
alternatives.

• User-Friendly Learning Curve: Limits technical knowledge require-
ments.

• Workplace Flexibility: Accessible across multiple platforms, not 
restricted to office use.

• Hardware Compatibility: Operates on existing infrastructure without 
additional resource demands.

• Implementation and Training Support: Ensures smooth onboarding 
and ongoing maintenance.

• Risk Mitigation: Aligns with organizational compliance and industry 
regulations.

• AI Perception Management: Positions AI as a tool for augmenting 
human creativity, not replacing jobs.
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This framework ensures the AI decision-support system integrates seam-
lessly into both technical and social environments, fostering adoption and 
long-term value. 

7.5 Evaluation 

7.5.1 Artifact Evaluation 

The _DecisionModelArtifact was developed in line with the third and 
fourth ADR principles, emphasizing active organizational involvement 
and a collaborative relationship between researchers and practitioners 
(Sein et al., 2011). Researchers contributed academic expertise in system 
design. At the same time, industry participants enriched the process with 
practical insights gathered during the earlier diagnostic iterations, jointly 
shaping the _DesignModelArtifact. 

Drawing on findings from the diagnostic iterations, the _ 
DesignModelArtifact integrates AI system requirements into both its 
knowledge base and inference engine, thereby establishing the AI envi-
ronment’s social framework, which begins with a conceptual foundation 
in the _DecisionArtifact, designed to address the core business problem, 
and the _Dataset artifact, enabling the _DecisionArtifact to operate 
within an AI system while also anticipating future data needs. 

Socio-technical factors were carefully embedded in the design, ensuring 
that any technical changes aligned with users’ social contexts, as 
outlined in the _SocialArtifact. With these components in place, the _ 
DesignModelArtifact is ready for verification and validation. 

7.5.2 Artifact Verification 

Verification of the _DesignModelArtifact required evaluating both the 
design process and the resulting artifact against the chapter’s objective: 
to develop a practically informed, theory-grounded AI decision-support 
model that operates effectively within both technical and social environ-
ments. This verification focused on two aspects:

• Iteration Design: Confirming that the current iteration was appro-
priately structured to achieve the chapter objective.

• Artifact Alignment: Ensuring the final _DesignModelArtifact 
successfully integrates insights from preceding diagnostic artifacts.
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The successful integration of these artifacts demonstrates that the 
design process effectively combined theoretical foundations with prac-
tical requirements to produce a robust AI decision-support model. Given 
that both the iteration design and the resulting artifact meet the intended 
objective, this design iteration is considered successfully verified. 

7.6 Reflection and Learning 

7.6.1 Artifact Validation 

The _DesignModelArtifact was validated based on its alignment with the 
book’s main objective, the appropriateness of the design approach, and 
the effectiveness of the final artifact. 

The book’s core objective is to develop a framework that illus-
trates decision programmability within an AI decision-support model 
to enhance decision-making strategies. The _DesignModelArtifact clearly 
supports this goal, demonstrating that the right solution is being built 
through a practical, theory-grounded approach. 

By following the chapter’s requirements and leveraging the design 
process’s emergent nature, the iterative design approach successfully 
shaped a practical, theory-grounded AI decision model, affirming that 
the right design was applied to achieve the intended objective. 

Finally, aligned with the chapter’s goal, the final design model arti-
fact provides a structured framework that informs industry discussions on 
empowerment and supports the development of a robust AI decision-
making model. Its contribution to the overarching objective is confirmed 
through the eADR process, which validates its full validation. 

7.6.2 ANT Enrollment Progression 

With the completion of design iteration, the actor-network transitioned 
from interessement to the enrollment phase of translation (Fig. 7.3).

In this phase, the translator integrated findings from the previous 
artifacts into a unified _DesignModelArtifact, presented as a proposed 
solution to address the network’s objectives. As no new actors emerged 
during this stage, all network participants are considered identified and 
confirmed. The enrollment process continues into the next chapter, where 
the _DesignModelArtifact is introduced into the network. Its success
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Fig. 7.3 ANT enrollment progression (design iteration)

relies on acceptance by source actors, who play a critical role in influencing 
target actors to enable broader adoption. 

7.7 Summary 

This chapter successfully met its objective by developing an initial AI 
decision-support model that is both practically inspired and theory-
grounded, designed to operate within technical and social environments. 
This was achieved by integrating insights from the three diagnostic 
artifacts. 

The chapter began with problem formulation and applied AI model 
design principles to construct the _DesignModelArtifact. The tech-
nical environment of the model was established by combining the 
_DecisionArtifact and the _DataSetArtifact, while the _SocialArtifact 
informed the model’s social dimension. Following its creation, the _ 
DesignModelArtifact was both validated and verified, confirming its align-
ment with the chapter’s objective. It is now ready to progress to the 
next chapter, which will introduce the model to the original itera-
tion _DecisionArtifact participants for final validation, resulting in the 
development of the _ValidatedModelArtifact.
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CHAPTER 8  

Implementation: Validated Decision-Support 
Model 

Abstract This chapter outlines the verification and validation of the 
_DesignModelArtifact, resulting in the final _ValidatedModelArtifact— 
an Artificial Intelligence (AI)-enabled decision-support model. Using 
the elaborated action design research (eADR) methodology, the model 
was reintroduced to the original participants to assess its alignment 
with five conceptual statements that cover verification and validation. 
Participant feedback confirmed the model’s logical structure, practical 
relevance, and intuitive design. The _ValidatedModelArtifact integrates 
the _DecisionArtifact, _DataSetArtifact, and _SocialArtifact, forming a 
balanced framework that addresses both technical and socio-technical 
considerations. Aligned with action design research (ADR) principles, 
the artifact evolved through continuous participant input and embedded 
evaluation. Limitations include the pace of AI evolution, non-exhaustive 
coverage of key performance indicators (KPIs), and variability in decision-
maker perspectives. The chapter also marks the completion of the actor-
network theory (ANT) enrollment moment: with the model accepted, the 
researcher exits the network, and source actors engage target actors, initi-
ating the mobilization phase. Future research may explore the model’s 
applicability across various industries, expand the use of ANT in AI 
contexts, and examine the impacts of implementation. 

Keywords Actor-network theory · Artificial intelligence · Elaborated 
action design research · Socio-technical thinking · Validity · Verification
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8.1 Introduction 

This chapter aims to elucidate the activities involved in verifying and vali-
dating the _DesignModelArtifact, culminating in the envisioned artificial 
intelligence (AI) decision-support model. This consists of presenting the 
_DesignModelArtifact to the original industry participants from the first 
diagnostic iteration (_DecisionArtifact), ensuring it aligns with the book’s 
primary objective. The chapter follows the structured stages of the elab-
orated action design research (eADR) process, beginning with problem 
formulation, which outlines the need for validation and verification. This 
is followed by action planning, which introduces interviews with partic-
ipant input, informing conceptual validation and verification statements. 
During the artifact creation section, participant feedback is incorporated 
to refine the model, resulting in the final _ValidatedModelArtifact. In the 
context of the actor-network theory (ANT), the chapter concludes by 
updating the actor-network, which entered its final phase of translation: 
mobilization. 

8.2 Problem Formulation 

The first and second principles of action design research (ADR) empha-
size the importance of addressing both theoretical and practical problems 
(Sein et al., 2011: 40). In line with this, Charnley et al. (2011: 13) stress 
the need to consider the diverse interests of stakeholders, reinforcing the 
importance of ensuring that the _DesignModelArtifact accurately reflects 
the perspectives and insights of the participants involved. 

8.2.1 Validation and Verification 

The terms verification and validation are often used interchangeably, 
which can create confusion about their distinct roles in system develop-
ment (Ryan & Wheatcraft, 2017). In this book, their meanings are clearly 
differentiated. Verification focuses on determining whether a system satis-
fies the conditions defined at the start of a development phase (IEEE, 
2012). Davis (1992) outlines verification methods, including logical
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and mathematical verification, which ensures that algorithms and rules 
are error-free, and program verification, which confirms that individual 
components are implemented correctly. In contrast, validation assesses 
whether the system meets its intended requirements, with a particular 
emphasis on stakeholder needs (IEEE, 2012). Davis (1992) describes 
three types of validation: descriptive validity (evaluating whether the 
model accurately explains the phenomenon and organizes information 
meaningfully), structural validity (assessing the inclusion of appropriate 
model elements), and predictive validity (determining whether the model 
can accurately predict the desired system behavior). Both verification and 
validation are essential to ensure the reliability of a model, as undetected 
errors can undermine its effectiveness (Kleijnen, 1995). Notably, Davis 
(1992) also emphasizes that involving participants in the problem context 
enhances the verification and validation process, making it more relevant 
and robust within organizational settings. 

8.2.2 Conceptual Design Statements 

To ensure that the refinement of the _DesignModelArtifact into the _ 
ValidatedModelArtifact, incorporating additional industry feedback and 
suggestions, meets established verification and validation standards, the 
following design statements were defined:

• Verification: 

– eADR iterations align with research objectives (Logical verifica-
tion). 

– The final artifact supports and addresses research goals 
(Program verification).

• Validation: 

– The research objectives adequately address the problem 
(Descriptive validity). 

– The eADR research-practitioner approach provides necessary 
knowledge (Structural validity). 

– The final decision-support framework enables the manufac-
turing industry to adopt new technologies (Predictive validity).
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8.3 Action Planning 

This iteration focuses on gathering industry feedback on the _ 
DesignModelArtifact developed in the previous phase, with the goal of 
refining it into a _ValidatedModelArtifact and advancing the model’s 
development. The data collection and processing methods used to 
support this refinement are outlined below. The _DesignModelArtifact 
was reintroduced to participants of the _DecisionArtifact (first diag-
nostic iteration), using a working document to guide discussions around 
key conceptual statements. These included the book’s primary objective, 
which was to conduct a unique eADR pre-implementation iteration to 
verify and validate the envisaged AI decision-support model and its under-
lying eADR design. Group discussions were held with participants, and 
the key feedback gathered is summarized in the following section. 

8.4 Artifact Creation 

8.4.1 Design Statement Feedback 

Key insights from the industry participants include the following: 

8.4.1.1 Verification 
The verification encompassed two categories, as follows:

• Logical verification: Participants identified several aspects of the 
model that aligned well with the research objectives, reinforcing its 
logical soundness. Firstly, they emphasized the flow of information 
within the eADR process, noting that its iterative nature enabled 
knowledge to move forward and backward. Rather than following 
a linear path tied to task completion, the model allowed for contin-
uous testing and refinement across stages, which enriched the quality 
of insights generated. Secondly, they emphasized the importance of 
knowledge creation across iterations, where findings were developed, 
critically evaluated, and refined before being progressed. This reflec-
tive process was essential for strengthening the eADR methodology 
and the organization’s broader knowledge base. Lastly, participants 
valued the adaptability of the eADR model, observing that it need 
not rigidly follow the literature-defined phases of diagnosis, design,
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implementation, and evaluation. This flexibility was viewed as a crit-
ical attribute for any decision-support framework in fast-changing 
industries.

• Program verification: Participants provided targeted feedback on the 
_DesignModelArtifact, confirming its alignment with the book’s 
objectives. They particularly appreciated the schematic represen-
tation of the model, which clearly and accessibly illustrated the 
distinction between social and technical components. This structured 
and visually coherent layout gave participants confidence that the 
_DesignModelArtifact accurately reflected the research objectives. 
Furthermore, the ease of understanding was a key strength noted 
across varying levels of technological expertise. Participants found 
the model intuitive and straightforward, reinforcing their belief in 
its practical applicability and overall effectiveness. 

8.4.1.2 Validation 
The validation encompassed three categories, as follows:

• Descriptive validity: Supported by the participants’ feedback, it 
was confirmed that the objectives were clearly defined and effec-
tively addressed the overarching book goal. Participants highlighted 
that the secondary objectives offered a structured and manageable 
breakdown of the research problem, enabling them to engage mean-
ingfully with the study, particularly from a social perspective on 
the adoption of new technology. The sub-objectives were consid-
ered logical and necessary steps toward achieving the primary aim. 
Furthermore, the iterative refinement of the _DesignModelArtifact 
into a validated artifact, presented to the original participants, rein-
forced the internal coherence of these sub-objectives. By involving 
participants in both the early and final stages, the design process 
successfully closed the loop, ensuring that participant perspectives 
were accurately represented and validated throughout the research 
process.

• Structural validity: The participants reinforced the structural validity 
and emphasized the valuable contributions of the researcher-
practitioner team. A key strength of this approach was the inte-
gration of insights from different managerial levels, each offering
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distinct perspectives that collectively enhanced the depth, rele-
vance, and applicability of the study’s findings. Additionally, the 
team’s composition, combining expertise from the manufacturing 
and information technology sectors, enabled a rich, multidisciplinary 
viewpoint. Participants emphasized the importance of minimizing 
translation loss when bridging social and technical domains, recog-
nizing that effective communication across these areas is crucial 
for maintaining the integrity of insights. They also emphasized 
the importance of researchers’ foundational understanding of the 
industry under investigation. The practical application of theoret-
ical knowledge was considered essential to producing contextually 
grounded research, with participants warning that a lack of industry 
familiarity could lead to misinterpretation of key phenomena.

• Predictive validity: As was demonstrated through the benefits 
observed within the manufacturing industry, the predictive validity 
aspect was confirmed. A central factor was the active inclusion of 
participants throughout the research process, from initial diagnosis 
to the final pre-implementation stage, which fostered curiosity about 
the model’s functionality and encouraged a sense of ownership. This 
engagement, facilitated through the eADR process, made the final 
_DesignModelArtifact feel organically integrated rather than exter-
nally imposed. Participants also highlighted the value of the model’s 
clarity and logical structure, which enhanced their confidence in 
adopting new technologies. A well-articulated framework enabled 
them to assess potential risks and opportunities better, making the 
transition to new solutions more manageable. Furthermore, a recur-
ring theme was the importance of understanding the origins of the 
technologies embedded in the model. When participants knew where 
system feedback originated, it reinforced their trust in the model’s 
outputs and strengthened their willingness to engage with and rely 
on its recommendations. 

8.4.2 _ValidatedModelArtifact 

Based on the verification and validation feedback, the final AI decision-
support model is confirmed as the _ValidatedModelArtifact, as presented 
in Fig. 8.1.
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Fig. 8.1 _ValidatedModelArtifact 

Figure 8.1 presents the final _ValidatedModelArtifact, which inte-
grates the core concepts of the diagnostic, design, and implementation 
iterations. 

8.5 Evaluation 

The _ValidatedModelArtifact, refined through industry feedback, inte-
grates key technical and social components to form a robust AI-
enabled decision-support model. Verified by participants as aligned 
with conceptual statements, the model advances the main research 
objective of illustrating decision programmability. It builds on the 
_DesignModelArtifact, combining the _DecisionArtifact as the infer-
ence engine, the _DataSetArtifact as the knowledge base, and the _ 
SocialArtifact, which embeds socio-technical considerations. This integra-
tion ensures a balanced framework, technically sound through its decision 
and programmability structures, and socially grounded by guiding factors 
for technology adoption. Practitioners identified the empowering impact 
of the approach in three areas: participatory design, adoption of new 
technologies, and understanding of AI feedback, with these outcomes 
validated through predictive statements, confirming the model’s practical 
relevance and contribution.



144 E. STEYN ET AL.

8.6 Reflection and Learning 

The final _ValidatedModelArtifact aligns with key ADR principles, 
demonstrating a rigorous and participatory design process. Evaluation 
was embedded through a unique eADR pre-implementation iteration, 
ensuring continuous participant validation. The model evolved itera-
tively, with the _DecisionArtifact, _SocialArtifact, and _DataSetArtifact, 
shaping the _DesignModelArtifact, which was refined into the final _ 
ValidatedModelArtifact based on user input. While the model demon-
strates strong contextual relevance, its broader applicability remains open 
to future exploration. However, the design process and context have limi-
tations, including the rapid pace of AI evolution, which may affect the 
longevity of the _DataSetArtifact, the non-exhaustive nature of identi-
fied key performance indicators (KPIs), and the subjective influence of 
participant experience on decision considerations. Future research could 
investigate decision programmability in the context of industries with 
distinct KPIs, expand the application of ANT in other AI-related contexts, 
and conduct practical implementation iterations to better understand the 
socio-technical impacts on AI system development. 

Following the completion of the pre-implementation iteration, the 
ANT enrollment moment initiated in the previous design iteration was 
finalized, marking the establishment of the _ValidatedModelArtifact as 
the definitive solution to support the network’s goal. At this stage of 
translation, no new actors entered through the obligatory passage point, 
indicating the stabilization of the actor-network, as illustrated in Fig. 8.2.

After the pre-implementation iteration, the final _ 
ValidatedModelArtifact was presented to source actors as the solu-
tion aligned with the network’s goal, i.e., to explore how decision 
programmability in an AI-driven, socio-technical context empowers 
manufacturing organizations. Upon recognizing the model’s value, 
source actors no longer required the researcher as a translator, marking 
the researcher’s exit from the network and their disassociation as an 
active actor within the organization. With the translator’s departure, 
source actors assumed responsibility for engaging target actors, thereby 
advancing the model’s acceptance during the implementation iteration. 
This process occurs at the organizational level and is beyond the scope of 
this book. At this stage, the network entered its final phase of translation: 
mobilization. Meanwhile, isolated actors (such as AI systems) and distant
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Fig. 8.2 ANT enrollment progression (Pre-implementation)

actors (such as competitors) continued to influence the network, inter-
acting independently with source and target actors. The roles of these 
actors in future translation moments present opportunities for further 
research. 

8.7 Summary 

This chapter focused on reintroducing the _DesignModelArtifact to 
earlier participants for verification and validation against five key concep-
tual design statements, achieved through the pre-implementation eADR 
iteration. The chapter detailed the problematization and action plan-
ning phases, with artifact development and participant feedback evaluated 
according to these criteria. This process confirmed the model’s align-
ment with the study’s primary objective and research problem, resulting 
in the final _ValidatedModelArtifact. Reflection on the artifact’s develop-
ment highlighted the role of ADR principles and identified future research 
opportunities in AI decision-making and system design, as well as study 
limitations. With the pre-implementation complete, the next and final 
chapter will summarize the study’s key findings and conclusions.
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CHAPTER 9  

Conclusion 

Abstract This chapter finalizes the empirical design of the artificial 
intelligence (AI)-enabled decision-support model by summarizing key 
components, outlining the methodology, and highlighting theoretical, 
methodological, and practical contributions. The book examines the 
integration of AI in decision-making within the socio-technical context 
of Industry 4.0, with a focus on balancing social and technical objec-
tives. Actor-Network Theory (ANT) was applied to examine interactions 
between human and non-human actors through problematization, inter-
essement, and enrollment phases. The elaborated action design research 
(eADR) approach was innovatively adapted through multiple diagnostic 
iterations and a pre-implementation phase, resulting in the creation of 
the _DecisionArtifact, _SocialArtifact, and _DataSetArtifact. These were 
integrated into the _DesignModelArtifact and validated to produce the 
final _ValidatedModelArtifact. The study contributes to theory by demon-
strating the adaptability of ANT to AI decision-making, methodolog-
ically advancing eADR processes, and practically enhancing managerial 
decision-making through user inclusion, technology adoption, and trans-
parency in AI models. Despite acknowledging potential technological and 
contextual limitations, the research promotes future studies on the appli-
cation of ANT across various industries and the exploration of more 
advanced AI model implementations. The Validated Model offers a robust 
and adaptable framework for diverse AI decision-support contexts.
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9.1 Introduction 

The previous chapter concluded the empirical design phases of the artifi-
cial intelligence (AI)-enabled decision-support model by performing the 
verification and validation tests of the _DesignModelArtifact, resulting in 
the _ValidatedModelArtifact. This chapter provides a brief overview of key 
components by recapping the background and literature review, followed 
by an outline of the applied methodology and the key objectives. The 
contributions are presented in three areas: theoretical (i.e., actor-network 
theory (ANT)), methodological (i.e., elaborated action design research 
(eADR)), and practical implications, before a brief concluding discussion. 

9.2 Overview 

Industry 4.0 integrates AI into daily life, driving significant societal and 
business changes. AI, defined as the creation of intelligent machines 
and software that mimic human cognition, has increasingly influenced 
decision-making, establishing algorithmic decision-makers (González 
García et al., 2019; Pannu, 2015). However, AI cannot function inde-
pendently of humans, requiring a balance between social and technical 
goals—a concept rooted in socio-technical thinking. Such an approach 
emphasizes the reciprocal relationship between humans and machines, 
aiming to harmonize technical and social conditions for an efficient 
work environment. This highlights a knowledge gap in understanding 
AI-driven decision-making within its social environment to ensure effec-
tive integration of social and technical elements. The book examines 
how a deeper understanding of decision programmability within an AI 
context, informed by socio-technical thinking, can improve performance 
management and decision-making.
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Since the 1980s, ANT has been widely applied in science and tech-
nology to analyze how networks form and how various actors interact to 
achieve shared goals. ANT considers networks as spaces where human 
and non-human actors collaborate through alliances and interactions. 
Network formation in ANT involves four translation moments: problema-
tization, interessement, enrollment, and mobilization (Zawawi, 2018). 
For purposes of this book, the first three translation moments were 
relevant, clarified as follows:

• Problematization: For this book, the researcher acted as the focal 
actor, identifying the problem and developing a theoretical under-
standing. Mid-level and senior-level managers were identified as 
human actors, while AI was non-human, and both could influence 
the network.

• Interessement: Entailing three distinct diagnostic iterations, the focal 
actor assigned the actor roles: 

– The first instance designated the human actors as source actors, 
influencing the target actor (i.e., the organization). At the 
same time, AI, as a contextual technology, was considered an 
isolated actor because it could not negotiate. This resulted 
in completing the _DecisionArtifact, with all actors passing 
through the obligatory point, as per ANT. 

– The second instance explored the social environment using 
models like the technology acceptance model (TAM) and the 
value-based adoption model (VAM) to positively influence 
source actors regarding the benefits of AI, resulting in the 
creation of the _SocialArtifact. Competitors highlighted AI’s 
role in maintaining competitiveness as distant actors but did 
not engage directly with other actors. 

– The third instance focused on the technical environment, devel-
oping a _DataSetArtifact that integrated the decision and social 
environment considerations into an AI model. This dataset 
strengthened the network by boosting the confidence of source 
actors.

• Enrollment: This entailed confirming all actors’ roles and align-
ment with the network’s goal, synthesizing the _DecisionArtifact, 
the _SocialArtifact, and the _DataSetArtifact into a schematic model 
called the _DesignModelArtifact. Finally, the _DesignModelArtifact
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was validated in collaboration with designated source actors, 
resulting in a final _ValidatedModelArtifact, as the AI-enabled 
decision-support model. 

The mobilization phase, which involves further research and implementa-
tion, was beyond the scope. 

9.3 Objectives and Design Approach 

9.3.1 Primary Objective 

As indicated in Chapter 1, the primary objective was to develop an AI-
enabled decision-support model to contextualize the programming of 
management decisions in an AI environment. 

This entailed several sub-objectives that required investigating AI’s 
technical and social environments. The former concluded in the _ 
DecisionArtifact and _DataSetArtifact, while the latter was addressed 
through the _SocialArtifact, focusing on minimizing negative impacts 
when implementing new technologies. Integrating these artifacts resulted 
in the final _ValidatedModelArtifact, which showcased an AI-enabled 
decision-support model. 

9.3.2 Research Design 

An eADR approach was followed, using three iterations: i.e., diagnostics, 
design, and pre-implementation iterations, as clarified below:

• The first diagnostics iteration entailed two cycles, in which the first 
cycle primarily collected data and developed knowledge. In contrast, 
the second cycle confirmed accuracy, resulting in a decision frame-
work (i.e., the _DecisionArtifact) suitable for an AI environment.

• The second diagnostics iteration contributed to understanding the 
social environment surrounding the _DecisionArtifact, resulting in 
the _SocialArtifact that supported socio-technical thinking.

• Similar to the first diagnostic iteration, the third diagnostics itera-
tion also entailed two stages: investigating the programmability of 
the _DecisionArtifact and culminating in the _DataSetArtifact, which 
enabled the integration of the _DecisionArtifact into a decision tree 
AI model.
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• The design iteration entailed the integration of the prior arti-
facts, i.e., the _DecisionArtifact, the _SocialArtifact, and the _ 
DataSetArtifact, to develop the _DesignModelArtifact.

• The pre-implementation iteration verified and validated the _ 
DesignModelArtifact, resulting in the final _ValidatedModelArtifact. 

9.3.3 Data Collection and Knowledge Development 

The data collection served as the foundation for the diagnostics iterations, 
as follows:

• First Diagnostics Iteration: Semi-structured and unstructured 
interviews, as well as group discussions, identified key industry 
performance indicators and supplemental themes and codes.

• Second Diagnostics Iteration: Similar methods were used to assess 
the current AI culture among participants and factors influencing AI 
adoption and usage.

• Third Diagnostics Iteration: Interviews and discussions evalu-
ated the dataset’s relevance, usability, and quality to enhance the 
programmability of management decisions. 

The data collected were analyzed using a thematic approach, enabling 
the identification of key thematic codes as the foundation for knowledge 
development in the relevant iterations. To ensure data credibility, senior 
managers reviewed the data provided by mid-level managers for additional 
input, and industry professionals assessed the literature-derived data. The 
final _ValidatedModelArtifact was also presented to knowledgeable partic-
ipants for verification and validation, ensuring the credibility of the data 
and the thoroughness of the artifact. 

9.4 Contribution 

9.4.1 Introduction 

Research contributions should arguably aim to expand existing discussions 
rather than redefine a field. They should assess the entire research process, 
offering new approaches, contributing to theories, or generating new data 
and insights.
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As such, the book presents original research on AI technology within 
the context of managerial accounting and performance management 
decision-making, integrating it with information technology. It adopted 
a creative approach using ANT, socio-technical thinking, and eADR 
methodologies. The book addressed the research gap by exploring 
AI decision-making models and the cultural environment needed to 
empower the pharmaceutical industry. Rather than aiming for generaliza-
tion, it encourages readers to draw their connections to its components, 
as detailed below. 

9.4.2 Theoretical Contribution 

Applying ANT to the (re-)emerging field of AI and introducing it to 
managerial decision-making makes a significant academic contribution. 
Thus, incorporating socio-technical thinking to assist with actor identi-
fication and role allocation demonstrates ANT’s adaptability, showcasing 
its versatility in integrating different theories. 

The design approach employed ANT to explore network forma-
tion and analyze interactions between human and non-human actors. It 
enhanced AI research by assigning specific titles to unique actors within 
this context. These insights provide a foundation for future studies to 
identify new actors or explore interactions within the contexts of AI and 
management. 

9.4.3 Methodological Contribution 

The eADR process typically involves four iterative stages: diagnosis, 
design, implementation, and evolution, allowing forward and backward 
progression as needed. The standard eADR approach employs a single 
diagnosis stage, with repeated iterations within each stage until the desired 
artifact is achieved. This book introduced two innovative adaptations to 
the eADR process, i.e.:

• Multiple Diagnosis Iterations: Instead of a single diagnosis iteration, 
it applied three distinct and independent iterations. Each iteration 
produced a unique artifact that was integrated into a single artifact 
during the design iteration.

• Pre-implementation Iteration: Unlike the traditional approach, 
which moves directly from design to implementation, this study
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included a pre-implementation iteration. This step focused on veri-
fying and validating the concept design, ensuring a valid model was 
ready for implementation. 

Continuous participant feedback during the various iterations empha-
sized the value of generating knowledge at each iteration stage. It 
highlighted the benefits of a researcher-practitioner team in enhancing 
research quality, particularly in complex research environments. 

9.4.4 Practical Contribution 

As mentioned earlier, the primary goal was to investigate how an 
AI-enabled decision-support model’s technical and social environments 
empower managerial decision-making. The predictive validation findings 
highlighted three key empowerment levels:

• User Inclusion: Industry participants valued their involvement from 
initial diagnosis to the pre-implementation phase. This engage-
ment fostered curiosity and reduced resistance to the final _ 
DesignModelArtifact, making it feel less forced. This suggests that 
including users in development stages helps integrate social consid-
erations into technological products.

• Enhanced Technology Adoption: The _DesignModelArtifact’s clear 
and logical structure increased participants’ confidence in adopting 
new technologies. Understanding the model’s components helped 
them identify threats and opportunities, promoting an investigative 
approach to new technologies rather than immediate rejection.

• Clarity of AI Model Sources: Participants felt empowered by under-
standing the sources within the AI model. Knowing where the 
system’s feedback originated assured the model’s outputs, enhancing 
trust and confidence in AI-driven decisions. 

These findings demonstrate how understanding an AI model’s social and 
technical aspects can empower users and lead to more informed, positive, 
and goal-oriented decisions about AI technologies.
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9.5 Limitations and Research Recommendations 

When evaluating the final _ValidatedModelArtifact and the applied theo-
ries and models in the context of this book, consider the following 
limitations:

• Due to the rapid pace of technological development, the current 
suggested artifacts may become outdated.

• The performance metrics are arguably not comprehensive and may 
differ across industries or organizations.

• The decision considerations reflect the views of specific participants 
and may vary with different decision-makers. 

The following may be considered as possible future (research and design) 
endeavors in the context of AI-enabled decision-support models:

• Applying ANT in diverse industries and research contexts can iden-
tify more actors and refine their roles, thereby improving actors’ 
management in emerging technologies like AI.

• Investigate an implementation phase for AI models to deepen under-
standing of actor interactions and the influence of socio-technical 
thinking on system development and deployment. 

9.6 Concluding Discussion 

As AI evolves in Industry 4.0 and organizations adapt to changing envi-
ronments, research into the role of AI in managerial applications becomes 
highly relevant. This book elucidates a subjective approach with a prag-
matic view of collected data. It employed an inductive, eADR process with 
three diagnostic iterations, a design iteration, and a pre-implementation 
iteration. These stages explored the social and technical environments 
of an AI decision-support model. ANT served as the theoretical frame-
work, with the  researcher acting as the focal actor and network translator. 
Human actors were classified as the source and target actors, while non-
human actors, including AI, were also given full actor status. AI was 
designated as an isolated actor, while industry competitors were identified 
as distant actors.
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The book aimed not to redefine the research field but to contribute 
to ongoing discussions by offering a new approach, supporting theo-
retical development, and providing fresh data. Rather than generalizing, 
it encouraged readers to find relevant connections within the various 
components. An empowering AI decision-support model may lead users 
to more positive adoption decisions and help them achieve their goals 
with new technologies. Three key empowerment factors were identified:

• Involvement in the Design Process: Participants felt included, 
reducing resistance to the final model.

• Encouraging Technology Adoption: A clear understanding of the 
model’s design increased confidence in using new technologies.

• Understanding AI Sources: Knowledge of AI’s data sources builds 
trust in the model. 

The research also contributed to a methodology for studying AI in 
decision-making contexts and provided insights into specific actors within 
the AI network. 

The book is grounded in reputable literature and uses established 
theoretical frameworks. New data from expert interviews strengthened 
the study’s robustness. The _ValidatedModelArtifact supports knowl-
edge transferability, allowing adaptation to other industries and research 
contexts. The rigorous and transparent methodology ensures repro-
ducibility, and the iterative process consistently validates findings, demon-
strating the study’s trustworthiness and completeness. 
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